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C Design discussion 139

1 Introduction

Haskoreis a collection of Haskell modules designed for expressing musical structures in the high-level,
declarative style offunctional programming. In Haskore, musical objects consist of primitive notions such as
notes and rests, operations to transform musical objects such as transpose and tempo-scaling, and operations
to combine musical objects to form more complex ones, such as concurrent and sequential composition.
From these simple roots, much richer musical ideas can easily be developed.

Haskore is a means for describingmusic—in particular Western Music—rather thansound. It is not a
vehicle for synthesizing sound produced by musical instruments, for example, although it does capture the
way certain (real or imagined) instruments permit control of dynamics and articulation.

Haskore also defines a notion ofliteral performancethrough whichobservationally equivalentmusical
objects can be determined. From this basis many useful properties can be proved, such as commutative,
associative, and distributive properties of various operators. Analgebra of musicthus surfaces.

In fact a key aspect of Haskore is that objects represent bothabstract musical ideasand theirconcrete
implementations. This means that when we prove some property about an object, that property is true about
the music in the abstractand about its implementation. Similarly, transformations that preserve musical
meaning also preserve the behavior of their implementations. For this reason Haskell is often called anex-
ecutable specification language; i.e. programs serve the role of mathematical specifications that are directly
executable.

Building on the results of the functional programming community’s Haskell effort has several important
advantages: First, and most obvious, we can avoid the difficulties involved in new programming language
design, and at the same time take advantage of the many years of effort that went into the design of Haskell.
Second, the resulting system is bothextensible(the user is free to add new features in substantive, creative
ways) andmodifiable(if the user doesn’t like our approach to a particular musical idea, she is free to change
it).

In the remainder of this paper I assume that the reader is familar with the basics of functional program-
ming and Haskell in particular. If not, I encourage reading at leastA Gentle Introduction to Haskell[?]
before proceeding. I also assume some familiarity withequational reasoning; an excellent introductory text
on this is [?].

1.1 Acknowledgements

Many students have contributed to Haskore over the years, doing for credit what I didn’t have the spare
time to do! I am indebted to them all: Amar Chaudhary, Syam Gadde, Bo Whong, and John Garvin, in
particular. Thanks also to Alastair Reid for implementing the first Midi-file writer, to Stefan Ratschan for
porting Haskore to GHC, and to Matt Zamec for help with the Csound compatibility module. I would also
like to express sincere thanks to my friend and talented New Haven composer, Tom Makucevich, for being
Haskore’s most faithful user.
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Figure 1: Overall System Diagram

2 The Architecture of Haskore

Figure1 shows the overall structure of Haskore. Note the independence of high level structures from the
“music platform” on which Haskore runs. Originally, the goal was for Haskore compositions to run equally
well as conventional midi-files [?], NeXT MusicKit score files [?] 1, and CSound score files [?] 2, and for
Haskore compositions to be displayed and printed in traditional notation using the CMN (Common Music
Notation) subsystem.3 In reality, three platforms are currently supported: MIDI, CSound, and some signal
processing routines written in Haskell. For musical notation an interface to Lilypond is currently in progress.

In any case, the independence of abstract musical ideas from the concrete rendering platform is ac-
complished by having abstract notions ofmusical object, player, instrument, andperformance. All of this
resides in the box labeled “Haskore” in the diagram above.

At the module level, Haskore is organized as follows:

module Haskore ( module Haskore,
module Music,
module Performance,

1The NeXT music platform is obsolete.
2There also exists a translation to CSound for an earlier version of Haskore.
3We have abandoned CMN entirely, as there are now better candidates for notation packages into which Haskore could be

mapped.
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module Player,
module Haskore.Interface.MIDI.Write,
module Haskore.Interface.MIDI. Read,
module Haskore.Interface.MIDI.Save,
module Haskore.Interface.MIDI.Load,
module Haskore.Interface.MIDI.Render)

where

import qualified Music
import qualified Performance
import qualified Player
import qualified Haskore.Interface.MIDI.Write
import qualified Haskore.Interface.MIDI. Read
import qualified Haskore.Interface.MIDI.Save
import qualified Haskore.Interface.MIDI.Load
import qualified Haskore.Interface.MIDI.Render

This document was written in theliterate programming style, and thus the LATEX manuscript file from
which it was generated is anexecutable Haskell program. It can be compiled under LATEX in two ways:
a basic mode provides all of the functionality that most users will need, and an extended mode in which
various pieces of lower-level code are provided and documented as well (see file header for details). This
version was compiled in extended mode. The document can be retrieved via WWW from:http://
haskell.org/haskore/ (consult the README file for details). It is also delivered with the standard
joint Nottingham/Yale Hugs release.

The Haskore code conforms to Haskell 1.4, and has been tested under the June, 1998 release of Hugs
1.4. Unfortunately Hugs does not yet support mutually recursive modules, so all references to the module
Player in this document are commented out, which in effect makes it part of modulePerformance
(with which it is mutually recursive).

A final word before beginning: As various musical ideas are presented in this Haskore tutorial, I urge
the reader to question the design decisions that are made. There is no supreme theory of music that dictates
my decisions, and what I present is actually one of several versions that I have developed over the years
(this version is much richer than the one described in [?]; it is the “Haskore in practice” version alluded to in
Section6.1of that paper). I believe that this version is suitable for many practical purposes, but the reader
may wish to modify it to better satisfy her intuitions and/or application.

3 Composing Music

3.1 Pitch

Perhaps the most basic musical idea is that of apitch, which consists of anoctaveand apitch class(i.e. one
of 12 semi-tones, cf. SectionC):

module Haskore.Basic.Pitch where
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A2 (-3,A) 27.5 Hz
A1 (-2,A) 55.0 Hz
A (-1,A) 110.0 Hz
a ( 0,A) 220.0 Hz
a1 ( 1,A) 440.0 Hz
a2 ( 2,A) 880.0 Hz

Figure 2: Note names, Haskore representations and frequencies.

import Data. Ix ( Ix )

type T = (Octave, Class)
data Class = Cf | C | Cs | Df | D | Ds | Ef | E | Es | Ff | F | Fs

| Gf | G | Gs | Af | A | As | Bf | B | Bs
deriving ( Eq, Ord , Ix , Enum, Show, Read)

type Octave = Int

So aPitch.T is a pair consisting of a pitch class and an octave. Octaves are just integers, but we de-
fine a datatype for pitch classes, since distinguishing enharmonics (such asG# andAb) may be important
(especially for notation). Figure2 shows the meaning of the somePitch.T values.

Treating pitches simply as integers is useful in many settings, so let’s also define some functions for
converting betweenPitch.T values andPitch.Absolute values (integers):

type Absolute = Int
type Relative = Int

toInt :: T -> Absolute
toInt (oct,pc) = 12*oct + classToInt pc

fromInt :: Absolute -> T
fromInt ap =

let (oct, n) = divMod ap 12
in (oct, [C,Cs,D,Ds,E,F,Fs,G,Gs,A,As,B] !! n)

classToInt :: Class -> Relative
classToInt pc = case pc of

Cf -> -1; C -> 0; Cs -> 1 -- or should Cf be 11?
Df -> 1; D -> 2; Ds -> 3
Ef -> 3; E -> 4; Es -> 5
Ff -> 4; F -> 5; Fs -> 6
Gf -> 6; G -> 7; Gs -> 8
Af -> 8; A -> 9; As -> 10
Bf -> 10; B -> 11; Bs -> 12 -- or should Bs be 0?

UsingPitch.Absolute we can compute the frequency associated with a pitch:
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intToFreq :: Floating a => Absolute -> a
intToFreq ap = 440 * 2 ** ( fromIntegral ( ap - toInt (1,A)) / 12)

We can also define a functionPitch.transpose , which transposes pitches (analogous to
Music.transpose , which transposes values of typeMusic.T ):

transpose :: Relative -> T -> T
transpose i p = fromInt ( toInt p + i)

1 Exercise. Show thattoInt . fromInt = id , and, up to enharmonic equivalences,
fromInt . toInt = id .

2 Exercise. Show thattranspose i (transpose j p) = transpose (i+j) p .

3.2 Music

module Haskore.Music where

import Haskore.General.Utility (pairMap)
import qualified Data. List as List
import Data. Ratio ((%))

import qualified Media.Temporal
import qualified Media
import qualified Media. List
import Media (prim, serial, parallel)
import qualified Haskore.Basic.Pitch as Pitch
import Haskore.Basic.Pitch hiding (T)

Melodies consist essentially of the musical atoms notes and rests.

data Atom = Rest -- a rest
| Note Pitch.T [NoteAttribute] -- a note

-- a percussion ?
deriving ( Show, Eq, Ord )

Here aNote is its pitch paired with its duration (in number of whole notes), along with a list of
NoteAttributes (defined later). ARest also has a duration, but of course no pitch or other attributes.

Note that durations are represented as rational numbers; specifically, as ratios of two HaskoreInt
values. Previous versions of Haskore used floating-point numbers, but rational numbers are more precise
(as long as theInt values do not exceed the maximum allowable).

From these atoms we can build more complex musical objects. They are captured by theMusic.T
datatype:4

4I prefer to call these “musical objects” rather than “musical values” because the latter may be confused with musical aesthetics.
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data Control =
Tempo DurRatio -- scale the tempo

| Transpose Pitch.Relative -- transposition
| Instrument IName -- instrument label
| Player PlayerName -- player label
| Phrase PhraseAttribute -- phrase attribute

deriving ( Show, Eq, Ord )

data Primitive =
Atom Dur Atom -- atomic object

| Control Control T -- control a sub - structure
deriving ( Show, Eq, Ord )

type T = Media. List .T Primitive

type Dur = Media.Temporal.Dur
type DurRatio = Dur
type IName = String
type PlayerName = String

atom :: Dur -> Atom -> T
atom d’ = prim . Atom d’
control :: Control -> T -> T
control ctrl = prim . Control ctrl

mkControl :: (a -> Control) -> (a -> T -> T)
mkControl ctrl x m = control (ctrl x) m
changeTempo :: DurRatio -> T -> T
changeTempo = mkControl Tempo
transpose :: Pitch.Relative -> T -> T
transpose = mkControl Transpose
setInstrument :: IName -> T -> T
setInstrument = mkControl Instrument
setPlayer :: PlayerName -> T -> T
setPlayer = mkControl Player
phrase :: PhraseAttribute -> T -> T
phrase = mkControl Phrase

infixr 7 +:+ {- like multiplication -}
infixr 6 =:= {- like addition -}
-- make them visible for importers of Music
(+:+), (=:=) :: T -> T -> T
(+:+) = (Media.+:+)
(=:=) = (Media.=:=)

8



note :: Pitch.T -> Dur -> [NoteAttribute] -> T
note p d’ nas = prim (Atom d’ (Note p nas))

note’ :: Pitch.Class -> Pitch.Octave ->
Dur -> [NoteAttribute] -> T

note’ = flip ( curry note)

cf,c,cs,df,d,ds,ef,e,es,ff,f,fs,gf,g,gs,af,a,as,bf,b,bs ::
Pitch.Octave -> Dur -> [NoteAttribute] -> T

cf = note’ Cf; c = note’ C; cs = note’ Cs
df = note’ Df; d = note’ D; ds = note’ Ds
ef = note’ Ef; e = note’ E; es = note’ Es
ff = note’ Ff; f = note’ F; fs = note’ Fs
gf = note’ Gf; g = note’ G; gs = note’ Gs
af = note’ Af; a = note’ A; as = note’ As
bf = note’ Bf; b = note’ B; bs = note’ Bs

Figure 3: Convenient note construction functions.

• serial ms is the sequential composition of the elements of the listms; e.g.Serial [m1, m2]
means thatm1andm2are played in sequence. (cf. SectionC)

• parallel ms is the parallel composition of the elements of the listms; e.g.Parallel [m1,
m2] means thatm1andm2are played simultaneously.

• changeTempo a m scales the rate at whichmis played (i.e. its tempo) by a factor ofa.

• transpose i m transposesmby intervali (in semitones).

• setInstrument iname m declares thatmis to be performed using instrumentiname .

• setPlayer pname m declares thatmis to be performed by playerpname.

• phrase pa m declares thatm is to be played using the phrase attribute (described later)pa . (cf.
SectionC)

It is convenient to represent these ideas in Haskell as a recursive datatype rather then simple function
calls because we wish to not only construct musical objects, but also take them apart, analyze their structure,
print them in a structure-preserving way, interpret them for performance purposes, etc. Nonetheless using
functions that are mapped to constructors has the advantage that song descriptions can stay independent
from a particular music data structure.

3.3 Convenient Auxiliary Functions

For convenience, let’s create simple names for familiar notes (Figure3), durations, and rests (Figure4).
Despite the large number of them, these names are sufficiently “unusual” that name clashes are unlikely.
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rest :: Dur -> T
rest d’ = prim (Atom d’ Rest)

dotted, doubleDotted :: Dur -> Dur
dotted = ((3%2) *)
doubleDotted = ((7%4) *)

bn, wn, hn, qn, en, sn, tn, sfn :: Dur
dwn, dhn, dqn, den, dsn, dtn :: Dur
ddhn, ddqn, dden :: Dur

bnr, wnr, hnr, qnr, enr, snr, tnr, sfnr :: T
dwnr, dhnr, dqnr, denr, dsnr, dtnr :: T
ddhnr, ddqnr, ddenr :: T

bn = 2 ; bnr = rest bn -- brevis rest
wn = 1 ; wnr = rest wn -- whole note rest
hn = 1% 2 ; hnr = rest hn -- half note rest
qn = 1% 4 ; qnr = rest qn -- quarter note rest
en = 1% 8 ; enr = rest en -- eight note rest
sn = 1%16 ; snr = rest sn -- sixteenth note rest
tn = 1%32 ; tnr = rest tn -- thirty - second note rest
sfn = 1%64 ; sfnr = rest sfn -- sixty - fourth note rest

dwn = dotted wn ; dwnr = rest dwn -- dotted whole note rest
dhn = dotted hn ; dhnr = rest dhn -- dotted half note rest
dqn = dotted qn ; dqnr = rest dqn -- dotted quarter note rest
den = dotted en ; denr = rest den -- dotted eighth note rest
dsn = dotted sn ; dsnr = rest dsn -- dotted sixteenth note rest
dtn = dotted tn ; dtnr = rest dtn -- dotted thirty - second note rest

ddhn = doubleDotted hn ; ddhnr = rest ddhn -- double - dotted half note rest
ddqn = doubleDotted qn ; ddqnr = rest ddqn -- double - dotted quarter note rest
dden = doubleDotted en ; ddenr = rest dden -- double - dotted eighth note rest

Figure 4: Convenient duration and rest definitions.
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3.4 Some Simple Examples

With this modest beginning, we can already express quite a few musical relationships simply and effectively.

Lines and Chords. Two common ideas in music are the construction of notes in a horizontal fashion (a
line or melody), and in a vertical fashion (achord):

line, chord :: [T] -> T
line = serial
chord = parallel

From the notes in the C major triad in register 4, I can now construct a C major arpeggio and chord as well:

cMaj :: [T]
cMaj = [ n 4 qn [] | n <- [c,e,g] ] -- octave 4, quarter notes

cMajArp, cMajChd :: T
cMajArp = line cMaj
cMajChd = chord cMaj

Delay and Repeat. Suppose now that we wish to describe a melodymaccompanied by an identical voice
a perfect 5th higher. In Haskore we simply write “m =:= transpose 7 m ”. Similarly, a canon-like
structure involvingmcan be expressed as “m =:= delay d m ”, where:

delay :: Dur -> T -> T
delay d’ m = if d’ == 0 then m else rest d’ +:+ m

Of course, Haskell’s non-strict semantics also allows us to define infinite musical objects. For example,
a musical object may be repeatedad nauseumusing this simple function:

repeat :: T -> T
repeat m = serial ( List . repeat m)

Thus an infinite ostinato can be expressed in this way, and then used in different contexts that extract only
the portion that’s actually needed.

Inversion and Retrograde. The notions of inversion, retrograde, retrograde inversion, etc. used in 12-
tone theory are also easily captured in Haskore. First let’s define a transformation from a line created by
line to a list:

invertAtom :: Pitch.T -> Atom -> Atom
invertAtom r (Note p nas) =

Note (Pitch. fromInt (2 * Pitch. toInt r - Pitch. toInt p)) nas
invertAtom _ (Rest) = Rest

retro, invert, retroInvert, invertRetro :: [(d,Atom)] -> [(d,Atom)]

11



retro = List . reverse
invert l = let h@((_, Note r _) : _) = l

inv (d’, at) = (d’, invertAtom r at)
in map inv h

retroInvert = retro . invert
invertRetro = invert . retro

3 Exercise. Show that “retro . retro ”, “ invert . invert ”, and “ retroInvert .
invertRetro ” are the identity on values created byline .

Determining Duration It is sometimes desirable to compute the duration in beats of a musical object; we
can do so as follows:

dur :: T -> Dur
dur = Media.Temporal.dur

instance Media.Temporal.Class Primitive where
dur (Atom d’ _) = d’
dur (Control (Tempo t) m) = dur m / t
dur (Control _ m) = dur m
none d’ = Atom d’ Rest

Super-retrograde. Using dur we can define a functionreverse that reverses anyMusic.T value
(and is thus considerably more useful thanretro defined earlier). Note the tricky treatment of parallel
compositions. Also note that this version wastes time. It computes the duration of smaller structures in the
case of parallel compositions. When it descends into a structure of which it has computed the duration it
computes the duration of its sub-structures again. This can lead to a quadratic time consumption.

reverse :: T -> T
reverse = mapList

( curry id )
( curry id )
List . reverse
(\ms -> let durs = map dur ms

dmax = maximum durs
in zipWith (delay . (dmax -)) durs ms)

Truncating Parallel Composition Note that the duration ofm1 =:= m2 is the maximum of the dura-
tions of
codem1 andm2(and thus if one is infinite, so is the result). Sometimes we would rather have the result be
of duration equal to the shorter of the two. This is not as easy as it sounds, since it may require interrupting
the longer one in the middle of a note (or notes).
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We will define a “truncating parallel composition” operator(/=:) , but first we will define an auxiliary
functionMusic.take such thatMusic.take d m is the musical objectm“cut short” to have at most
durationd. The name matches the one of the moduleList because the function is quite similar.

take :: Dur -> T -> T
take newDur m =

if newDur < 0
then error ("Music.take: newDur " ++ show newDur ++ " must be non-negative")
else snd ( take ’ newDur m)

takeLine :: Dur -> [T] -> [T]
takeLine newDur = snd . takeLine’ newDur

take ’ :: Dur -> T -> (Dur, T)
take ’ newDur m =

if newDur == 0
then (0, rest 0)
else foldListFlat

(\oldDur at -> let takenDur = min oldDur newDur
in (takenDur, atom takenDur at))

(\ctrl m’ -> case ctrl of
Tempo t -> pairMap ((/t), changeTempo t)

( take ’ (newDur * t) m’)
_ -> pairMap ( id , control ctrl)

( take ’ newDur m’))
(\ms -> pairMap ( id ,line) (takeLine’ newDur ms))
(\ms -> pairMap ( maximum,chord) ( unzip ( map ( take ’ newDur) ms)))
m

takeLine’ :: Dur -> [T] -> (Dur, [T])
takeLine’ 0 _ = (0, [])
takeLine’ _ [] = (0, [])
takeLine’ newDur (m:ms) =

let m’ = take ’ newDur m
ms’ = takeLine’ (newDur - fst m’) ms

in ( fst m’ + fst ms’, snd m’ : snd ms’)

Note thatMusic.take is ready to handle aMusic.T object of infinite length. The implementation
of takeLine’ and take’ would be simpler if one does not compute the duration of the taken part of
the music intake’ . Instead one could compute the duration of the taken part where it is needed, i.e.
after takeLine’ calls Music.take’ . The drawback of this simplification would be analogously to
Music.reverse : The duration of sub-structures must be computed again and again, which results in
quadratic runtime in the worst-case.

With Music.take , the definition of(/=:) is now straightforward:

(/=:) :: T -> T -> T

13



m1 /=: m2 = Haskore.Music. take ( min (dur m1) (dur m2)) (m1 =:= m2)

Unfortunately, whereasMusic.take can handle infinite-duration music values,(/=:) cannot.

4 Exercise. Define a version of(/=:) that shortens correctly when either or both of its arguments are
infinite in duration.

For completeness we want to define a function somehow dual toMusic.take . TheMusic.drop
removes a prefix of the given duration from the music. Notes that begin in the removed part are lost, this is
especially important for notes which start in the removed part and end in the remainder.

drop :: Dur -> T -> T
drop remDur =

if remDur < 0
then error ("Music.drop: remDur " ++ show remDur ++ " must be non-negative")
else snd . drop ’ remDur

dropLine :: Dur -> [T] -> [T]
dropLine remDur = snd . dropLine’ remDur

drop ’ :: Dur -> T -> (Dur, T)
drop ’ remDur m =

if remDur == 0
then (0, m)
else foldListFlat

(\oldDur _ -> let newDur = min oldDur remDur
in (newDur, rest (oldDur-newDur)))

(\ctrl m’ -> case ctrl of
Tempo t -> pairMap ((/t), changeTempo t)

( drop ’ (remDur * t) m’)
_ -> pairMap ( id , control ctrl)

( drop ’ remDur m’))
(\ms -> pairMap ( id ,line) (dropLine’ remDur ms))
(\ms -> pairMap ( maximum,chord) ( unzip ( map ( drop ’ remDur) ms)))
m

dropLine’ :: Dur -> [T] -> (Dur, [T])
dropLine’ 0 m = (0, m)
dropLine’ remDur [] = (remDur, [])
dropLine’ remDur (m:ms) =

let (dropped, m’) = drop ’ remDur m
in if dropped < remDur

then pairMap ((dropped+), id ) (dropLine’ (remDur - dropped) ms)
else (remDur, if m’ == rest 0 then ms else m’ : ms)

In pairMap we usefst andsnd , in order to make sure that it also works if one of the arguments is an
infinite list.
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Inspecting aMusic.T Here are some routines which specialize functions from moduleMedia to mod-
uleMusic .

foldBinFlat :: (Dur -> Atom -> b)
-> (Control -> T -> b)
-> (T -> T -> b)
-> (T -> T -> b)
-> b -> T -> b

foldBinFlat fa fc = Media.foldBinFlat (foldPrim fa fc)

foldListFlat :: (Dur -> Atom -> b)
-> (Control -> T -> b)
-> ([T] -> b)
-> ([T] -> b)
-> T -> b

foldListFlat fa fc = Media.foldListFlat (foldPrim fa fc)

foldPrim :: (Dur -> Atom -> b) -> (Control -> T -> b) -> Primitive -> b
foldPrim fa fc pr =

case pr of
Atom d’ at -> fa d’ at
Control ctrl m -> fc ctrl m

foldList :: (Dur -> Atom -> b)
-> (Control -> b -> b)
-> ([b] -> b)
-> ([b] -> b)
-> T -> b

foldList fa fc fser fpar = Media.foldList
(\pr -> case pr of

Atom d’ at -> fa d’ at
Control ctrl m -> fc ctrl (foldList fa fc fser fpar m))

fser fpar

mapList, mapListFlat ::
(Dur -> Atom -> (Dur, Atom))

-> (Control -> T -> (Control, T))
-> ([T] -> [T])
-> ([T] -> [T])
-> T -> T

mapListFlat fa fc = Media.mapListFlat
(\pr -> case pr of

Atom d’ at -> uncurry Atom (fa d’ at)
Control ctrl m -> uncurry Control (fc ctrl m))
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mapList fa fc fser fpar = Media.mapList
(\pr -> case pr of

Atom d’ at -> uncurry Atom (fa d’ at)
Control ctrl m -> uncurry Control (fc ctrl (mapList fa fc fser fpar m)))

fser fpar

3.5 Trills

module Haskore.Basic.Trill where

import qualified Haskore.Music as Music

A trill is an ornament that alternates rapidly between two (usually adjacent) pitches. Let’s implement a
trill as a function that take a note as an argument and returns a series of notes whose durations add up to the
same duration as as the given note.

A trill alternates between the given note and another note, usually the note above it in the scale. There-
fore, it must know what other note to use. So that the structure oftrill remains parallel across different
keys, we’ll implement the other note in terms of its interval from the given note in half steps. Usually, the
note is either a half-step above (interval = 1) or a whole-step above (interval = 2). Using negative numbers,
a trill that goes to lower notes can even be implemented.

Also, the trill needs to know how fast to alternate between the two notes. One way is simply to specify
the type of smaller note to use. (Another implementation will be discussed later.) So, ourtrill has the
following type:

trill :: Int -> Music.Dur -> Music.T -> Music.T

Its implementation:

trill i d m =
let atom = Music. take d m
in Music.line (Music.takeLine (Music.dur m)

( cycle [atom, Music. transpose i atom]))

Since the function usesMusic.tranpose one can even trill more complex objects like chords.

The next version oftrill starts on the second note, rather than the given note. It is simple to define a
function that starts on the other note:

trill’ :: Int -> Music.Dur -> Music.T -> Music.T
trill’ i sDur m =

trill ( negate i) sDur (Music. transpose i m)

Another way to define a trill is in terms of the number of subdivided notes to be included in the trill.

trilln :: Int -> Integer -> Music.T -> Music.T
trilln i nTimes m =

trill i (Music.dur m / fromIntegral nTimes) m
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This, too, can be made to start on the other note.

trilln’ :: Int -> Integer -> Music.T -> Music.T
trilln’ i nTimes m =

trilln ( negate i) nTimes (Music. transpose i m)

Finally, aroll can be implemented as a trill whose interval is zero. This feature is particularly useful
for percussion.

roll :: Music.Dur -> Music.T -> Music.T
rolln :: Integer -> Music.T -> Music.T

roll d = trill 0 d
rolln nTimes = trilln 0 nTimes

3.6 Percussion

Percussion is a difficult notion to represent in the abstract, since in a way, a percussion instrument is just
another instrument, so why should it be treated differently? On the other hand, even common practice
notation treats it specially, even though it has much in common with non-percussive notation. The midi
standard is equally ambiguous about the treatment of percussion: on one hand, percussion sounds are chosen
by specifying an octave and pitch, just like any other instrument, on the other hand these notes have no tonal
meaning whatsoever: they are just a conveneient way to select from a large number of percussion sounds.
Indeed, part of the General Midi Standard is a set of names for commonly used percussion sounds.

Since Midi is such a popular platform, we can at least define some handy functions for using the General
Midi Standard. We start by defining the datatype shown in Figure5, which borrows its constructor names
from the General Midi standard. The comments reflecting the “Midi Key” numbers will be explained later,
but basically a Midi Key is the equivalent of an absolute pitch in Haskore terminology. So all we need is a
way to convert these percussion sound names into aMusic.T object; i.e. aNote :

toMusic :: T -> Dur -> [NoteAttribute] -> Music.T
toMusic ds =

note (Pitch. fromInt ( fromEnum ds + 35 - MidiFile.zeroKey))

For example, here are eight bars of a simple rock or ”funk groove” that usesperc androll :

funkGroove :: Music.T
funkGroove =

let p1 = toMusic LowTom qn []
p2 = toMusic AcousticSnare en []

in changeTempo 3 (setInstrument "Drums" (Music. take 8 (Music. repeat
( (Music.line [p1, qnr, p2, qnr, p2,

p1, p1, qnr, p2, enr])
=:= roll en (toMusic ClosedHiHat 2 []) )

)))

We can go one step further by defining our own little “percussion datatype:”
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module Haskore.Basic.Drum
(T(..), toMusic, lineToMusic, elementToMusic, funkGroove) where

import Data. Ix ( Ix )

import Haskore.Basic.Trill
import Haskore.Music

(NoteAttribute, Dur, qn, en, qnr, enr, (=:=),
changeTempo, setInstrument,
note, rest, line)

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import qualified Haskore.Interface.MIDI.File as MidiFile

data T =
AcousticBassDrum -- Midi Key 35

| BassDrum1 -- Midi Key 36
| SideStick -- ...
| AcousticSnare | HandClap | ElectricSnare | LowFloorTom
| ClosedHiHat | HighFloorTom | PedalHiHat | LowTom
| OpenHiHat | LowMidTom | HiMidTom | CrashCymbal1
| HighTom | RideCymbal1 | ChineseCymbal | RideBell
| Tambourine | SplashCymbal | Cowbell | CrashCymbal2
| Vibraslap | RideCymbal2 | HiBongo | LowBongo
| MuteHiConga | OpenHiConga | LowConga | HighTimbale
| LowTimbale | HighAgogo | LowAgogo | Cabasa
| Maracas | ShortWhistle | LongWhistle | ShortGuiro
| LongGuiro | Claves | HiWoodBlock | LowWoodBlock
| MuteCuica | OpenCuica | MuteTriangle
| OpenTriangle -- Midi Key 82

deriving ( Show, Eq, Ord , Ix , Enum)

Figure 5: General Midi Percussion Names
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data Element =
N Dur [NoteAttribute] -- note

| R Dur -- rest
| Roll Dur Dur [NoteAttribute] -- roll w/ duration
| Rolln Integer Dur [NoteAttribute] -- roll w/ number of strokes

lineToMusic :: T -> [Element] -> Music.T
lineToMusic dsnd = setInstrument "Drum" .

Music.line . map (elementToMusic dsnd)

elementToMusic :: T -> Element -> Music.T
elementToMusic dsnd el =

let drum = toMusic dsnd
in case el of

N dur nas -> drum dur nas
R dur -> rest dur
Roll sDur dur nas -> roll sDur (drum dur nas)
Rolln nTimes dur nas -> rolln nTimes (drum dur nas)

3.7 Phrasing and Articulation

Recall that theNote constructor contained a field ofNoteAttribute s. These are values that are attached
to notes for the purpose of notation or musical interpretation. Likewise, thePhrase constructor permits
one to annotate an entire musical object with aPhraseAttribute . These two attribute datatypes cover
a wide range of attributions found in common practice notation, and are shown in Figure6. Beware that use
of them requires the use of a player that knows how to interpret them! Players will be described in more
detail in Section5.

Again, to stay independent from the underlying data structure we define some functions that simplify
the application of several phrases.

accent, crescendo, diminuendo, loudness,
ritardando, accelerando,
staccato, legato :: Float -> T -> T

accent = phrase . Dyn . Accent
crescendo = phrase . Dyn . Crescendo
diminuendo = phrase . Dyn . Diminuendo
loudness = phrase . Dyn . Loudness

ritardando = phrase . Tmp . Ritardando
accelerando = phrase . Tmp . Accelerando

staccato = phrase . Art . Staccato
legato = phrase . Art . Legato
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data NoteAttribute = Velocity Float -- intensity of playing between 0 and 1
| Fingering Int
| Dynamics String
| PFields [ Float ]

deriving ( Eq, Ord , Show)

data PhraseAttribute = Dyn Dynamic
| Tmp Tempo
| Art Articulation
| Orn Ornament

deriving ( Eq, Ord , Show)

data Dynamic = Accent Float | Crescendo Float | Diminuendo Float
| StdLoudness StdLoudness | Loudness Float

deriving ( Eq, Ord , Show)

data StdLoudness = PPP | PP | P | MP | SF | MF | NF | FF | FFF
deriving ( Eq, Ord , Show, Enum)

data Tempo = Ritardando Float | Accelerando Float
deriving ( Eq, Ord , Show)

data Articulation = Staccato Float | Legato Float | Slurred Float
| Tenuto | Marcato | Pedal | Fermata | FermataDown | Breath
| DownBow | UpBow | Harmonic | Pizzicato | LeftPizz
| BartokPizz | Swell | Wedge | Thumb | Stopped

deriving ( Eq, Ord , Show)

data Ornament = Trill | Mordent | InvMordent | DoubleMordent
| Turn | TrilledTurn | ShortTrill
| Arpeggio | ArpeggioUp | ArpeggioDown
| Instruction String | Head NoteHead

deriving ( Eq, Ord , Show)

data NoteHead = DiamondHead | SquareHead | XHead | TriangleHead
| TremoloHead | SlashHead | ArtHarmonic | NoHead

deriving ( Eq, Ord , Show)

Figure 6: Note and Phrase Attributes.
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Note that some of the attributes are parameterized with a numeric value. This is used by a player to
control the degree to which an articulation is to be applied. For example, we would expectLegato 1.2 to
create more of a legato feel thanLegato 1.1 . The following constants represent default values for some
of the parameterized attributes:

defltLegato, defltStaccato,
defltAccent, bigAccent :: T -> T

defltLegato = legato 1.1
defltStaccato = staccato 0.5
defltAccent = accent 1.2
bigAccent = accent 1.5

To understand exactly how a player interprets an attribute requires knowing how players are defined.
Haskore defines only a few simple players, so in fact many of the attributes in Figure6 are to allow the user
to give appropriate interpretations of them by her particular player. But before looking at the structure of
players we will need to look at the notion of aperformance(these two ideas are tightly linked, which is why
thePlayer andPerformance modules are mutually recursive).

5 Exercise.Find a simple piece of music written by your favorite composer, and transcribe it into Haskore.
In doing so, look for repeating patterns, transposed phrases, etc. and reflect this in your code, thus revealing
deeper structural aspects of the music than that found in common practice notation.

SectionB.2 shows the first 28 bars of Chick Corea’s “Children’s Song No. 6” encoded in Haskore.

3.8 Intervals

In music theory, an interval is the difference (a ratio or logarithmic measure) in pitch between two notes and
often refers to those two notes themselves (otherwise known as a dyad).

Here we list some common names for some possible intervals.

module Haskore.Basic.Interval where

unison, minorSecond, majorSecond, minorThird, majorThird,
fourth, fifth, minorSixth, majorSixth, minorSeventh, majorSeventh,
octave, octaveMinorSecond, octaveMajorSecond, octaveMinorThird,
octaveMajorThird, octaveFourth, octaveFifth, octaveMinorSixth,
octaveMajorSixth, octaveMinorSeventh, octaveMajorSeventh :: Integral a => a

unison = 0
minorSecond = 1
majorSecond = 2
minorThird = 3
majorThird = 4
fourth = 5
fifth = 7
minorSixth = 8
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majorSixth = 9
minorSeventh = 10
majorSeventh = 11
octave = 12
octaveMinorSecond = octave + minorSecond
octaveMajorSecond = octave + majorSecond
octaveMinorThird = octave + minorThird
octaveMajorThird = octave + majorThird
octaveFourth = octave + fourth
octaveFifth = octave + fifth
octaveMinorSixth = octave + minorSixth
octaveMajorSixth = octave + majorSixth
octaveMinorSeventh = octave + minorSeventh
octaveMajorSeventh = octave + majorSeventh

3.9 Representing Chords

Earlier I described how to represent chords as values of typeMusic.T . However, sometimes it is convenient
to treat chords more abstractly. Rather than think of a chord in terms of its actual notes, it is useful to think
of it in terms of its chord “quality”, coupled with the key it is played in and the particular voicing used.
For example, we can describe a chord as being a “major triad in root position, with root middle C”. Several
approaches have been put forth for representing this information, and we cannot cover all of them here.
Rather, I will describe two basic representations, leaving other alternatives to the skill and imagination of
the reader.5

First, one could use apitchrepresentation, where each note is represented as its distance from some fixed
pitch. 0 is the obvious fixed pitch to use, and thus, for example,[0,4,7] represents a major triad in root
position. The first zero is in some sense redundant, of course, but it serves to remind us that the chord is in
“normal form”. For example, when forming and transforming chords, we may end up with a representation
such as[2,6,9] , which is not normalized; its normal form is in fact[0,4,7] . Thus we define:

A chord is inpitch normal formif the first pitch is zero, and the subsequent pitches are mono-
tonically increasing.

One could also represent a chordintervalically; i.e. as a sequence of intervals. A major triad in root
position, for example, would be represented as[4,3,-7] , where the last interval “returns” us to the
“origin”. Like the 0 in the pitch representation, the last interval is redundant, but allows us to define another
sense of normal form:

A chord is ininterval normal formif the intervals are all greater than zero, except for the last
which must be equal to the negation of the sum of the others.

In either case, we can define a chord type as:

5For example, Forte prescribes normal forms for chords in an atonal setting [?].
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module Haskore.Basic.Chord where

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Basic.Interval as I
import qualified Haskore.Music as Music

type T = [Pitch.Relative]

We might ask whether there is some advantage, computationally, of using one of these representations
over the other. However, there is an invertible linear transformation between them, as defined by the follow-
ing functions, and thus there is in fact little advantage of one over the other:

pitchToInterval :: T -> T
pitchToInterval ch = aux ch

where aux (n1:n2:ns) = (n2-n1) : aux (n2:ns)
aux [n] = [ head ch - n]
aux _ = error "pitchToInterval: Chord must be non-empty."

intervalToPitch :: T -> T
intervalToPitch ch = 0 : aux 0 ch

where aux _ [_] = []
aux p (n:ns) = n’ : aux n’ ns where n’ = p+n
aux _ _ = error "intervalToPitch: Chord must be non-empty."

6 Exercise.Show thatpitchToInterval andintervalToPitch are inversesin the following sense:
for any chordch1 in pitch normal form, andch2 in interval normal form, each of length at least two:

intervalToPitch (pitchToInterval ch1) = ch1
pitchToInterval (intervalToPitch ch2) = ch2

Another operation we may wish to perform is a test forequalityon chords, which can be done at many
levels: based only on chord quality, taking inversion into account, absolute equality, etc. Since the above
normal forms guarantee a unique representation, equality of chords with respect to chord quality and inver-
sion is simple: it is just the standard (overloaded) equality operator on lists. On the other hand, to measure
equality based on chord quality alone, we need to account for the notion of aninversion.

Using the pitch representation, the inversion of a chord can be defined as follows:

pitchInvert, intervalInvert :: T -> T
pitchInvert (0:p2:ps) = 0 : map ( subtract p2) ps ++ [12-p2]
pitchInvert _ =

error "pitchInvert: Pitch chord representation must start with a zero."

Although we could also directly define a function to invert a chord given in interval representation, we will
simply define it in terms of functions already defined:

intervalInvert = pitchToInterval . pitchInvert . intervalToPitch
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We can now determine whether a chord in normal form has the same quality (but possibly different
inversion) as another chord in normal form, as follows: simply test whether one chord is equal either to the
other chord or to one of its inversions. Since there is only a finite number of inversions, this is well defined.
In Haskell:

samePitch, sameInterval :: T -> T -> Bool
samePitch ch1 ch2 =

let invs = take ( length ch1) ( iterate pitchInvert ch1)
in ch2 ‘ elem ‘ invs

sameInterval ch1 ch2 =
let invs = take ( length ch1) ( iterate intervalInvert ch1)
in ch2 ‘ elem ‘ invs

For example,samePitch [0,4,7] [0,5,9] returnsTrue (since[0,5,9] is the pitch normal form
for the second inversion of[0,4,7] ).

We want to close the section with some common types of chords.

majorInt, minorInt, majorSeventhInt, minorSeventhInt,
dominantSeventhInt, minorMajorSeventhInt,
sustainedFourthInt :: [Pitch.Relative]

majorInt = [I.unison, I.majorThird, I.fifth]
minorInt = [I.unison, I.minorThird, I.fifth]

majorSeventhInt = [I.unison, I.majorThird, I.fifth, I.majorSeventh]
minorSeventhInt = [I.unison, I.minorThird, I.fifth, I.minorSeventh]
dominantSeventhInt = [I.unison, I.majorThird, I.fifth, I.minorSeventh]
minorMajorSeventhInt = [I.unison, I.minorThird, I.fifth, I.majorSeventh]

sustainedFourthInt = [I.unison, I.fourth, I.fifth]

makeChord :: [Pitch.Relative] -> Music.T -> [Music.T]
makeChord int m = map ( flip Music. transpose m) int

major, minor, majorSeventh, minorSeventh, dominantSeventh,
minorMajorSeventh, sustainedFourth :: Music.T -> [Music.T]

major = makeChord majorInt
minor = makeChord minorInt

majorSeventh = makeChord majorSeventhInt
minorSeventh = makeChord minorSeventhInt
dominantSeventh = makeChord dominantSeventhInt
minorMajorSeventh = makeChord minorMajorSeventhInt
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sustainedFourth = makeChord sustainedFourthInt

3.10 Tempo

module Haskore.Basic.Tempo where

import Data. Ratio ((%))
import qualified Data. List as List
import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import Haskore.Music(changeTempo, qn, en, sn, line, (+:+), (=:=))

Set tempo. To make it easier to initialize the duration element of aPerformanceContext.T (see
Section4), we can define a “metronome” function that, given a standard metronome marking (in beats per
minute) and the note type associated with one beat (quarter note, eighth note, etc.) generates the duration of
one whole note:

metro :: Fractional a => a -> Music.Dur -> a
metro setting dur = 60 / (setting * fromRational dur)

Additionally we define some common tempos and some range of interpretation as in Figure7. This
means, the tempo Andante may vary betweenfst andanteRange andsnd andanteRange beats
per minute. For example,metro andante qn creates a tempo of 92 quarter notes per minute.

Polyrhythms. For some rhythmical ideas, consider first a simpletriplet of eighth notes; it can be expressed
as “Tempo (3%2) m”, wheremis a line of three eighth notes. In factTempo can be used to create quite
complex rhythmical patterns. For example, consider the “nested polyrhythms” shown in Figure8. They
can be expressed quite naturally in Haskore as follows (note the use of thewhere clause inpr2 to capture
recurring phrases):

pr1, pr2 :: Pitch.T -> Music.T
pr1 p =

changeTempo (5%6)
(changeTempo (4%3)

(line [mkLn 1 p qn,
changeTempo (3%2)

(line [mkLn 3 p en,
mkLn 2 p sn,
mkLn 1 p qn] ),

mkLn 1 p qn]) +:+
changeTempo (3%2) (mkLn 6 p en))

pr2 p =
changeTempo (7%6)
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largoRange, larghettoRange, adagioRange, andanteRange,
moderatoRange, allegroRange, prestoRange, prestissimoRange

:: Fractional a => (a,a)

largoRange = ( 40, 60) -- slowly and broadly
larghettoRange = ( 60, 68) -- a little less slow than largo
adagioRange = ( 66, 76) -- slowly
andanteRange = ( 76,108) -- at a walking pace
moderatoRange = (108,120) -- at a moderate tempo
allegroRange = (120,168) -- quickly
prestoRange = (168,200) -- fast
prestissimoRange = (200,208) -- very fast

largo, larghetto, adagio, andante, moderato, allegro,
presto, prestissimo :: Fractional a => a

average :: Fractional a => a -> a -> a
average x y = (x+y)/2

largo = uncurry average largoRange
larghetto = uncurry average larghettoRange
adagio = uncurry average adagioRange
andante = uncurry average andanteRange
moderato = uncurry average moderatoRange
allegro = uncurry average allegroRange
presto = uncurry average prestoRange
prestissimo = uncurry average prestissimoRange

Figure 7: Common names for tempo.
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Figure 8: Nested Polyrhythms
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(line [m1,
changeTempo (5%4) (mkLn 5 p en),
m1,
mkLn 2 p en])

where m1 = changeTempo (5%4) (changeTempo (3%2) m2 +:+ m2)
m2 = mkLn 3 p en

mkLn :: Int -> Pitch.T -> Music.Dur -> Music.T
mkLn n p d = line ( take n ( List . repeat (Music.note p d [])))

To play polyrhythmspr1 andpr2 in parallel using middle C and middle G, respectively, we would do the
following (middle C is in the 5th octave):

pr12 :: Music.T
pr12 = pr1 (5, Pitch.C) =:= pr2 (5, Pitch.G)

Symbolic Meter Changes We can implement a notion of “symbolic meter changes” of the form “oldnote
= newnote” (quarter note = dotted eighth, for example) by defining a function:

(=/=) :: Music.Dur -> Music.Dur -> Music.T -> Music.T
old =/= new = changeTempo (new/old)

Of course, using the new function is not much longer than usingchangeTempo directly, but it may have
nemonic value.

4 Interpretation and Performance

module Haskore.Music.Performance where

import Haskore.Music
(IName, PlayerName, NoteAttribute, PhraseAttribute)

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import Data. List ( unfoldr )

Now that we have defined the structure of musical objects, let us turn to the issue ofperformance, which
we define as a temporally ordered sequence of musicalevents:

type T = [Event]

data Event = Event {eTime :: Time, eInst :: IName, ePitch :: Pitch.Absolute,
eDur :: Dur, eVel :: Velocity, pFields :: [ Float ]}

deriving ( Eq, Ord , Show)

type Time = Float
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type Dur = Float
type Volume = Float
type Velocity = Float -- between 0 and 2, default is 1

An event is the lowest of our music representations not yet committed to Midi, CSound, or the Mu-
sicKit. An eventEvent {eTime = s, eInst = i, ePitch = p, eDur = d, eVel = v }
captures the fact thats seconds after the preceding event (cf. SectionC) instrumenti starts sounding with
pitchp and velocityv for a durationd (where now duration is measured in seconds, rather than beats).

To generate a complete performance of, i.e. give an interpretation to, a musical object, we must know the
time to begin the performance, and the proper volume, key and tempo. We must also know whatplayersto
use; that is, we need a mapping from thePlayerName s in an abstract musical object to the actual players
to be used. (We don’t yet need a mapping from abstractINames to instruments, since this is handled in the
translation from a performance into, say, Midi, such as defined in Section6.1.)

We can thus model a performer as a functionfromMusic which maps all of this information and a
musical object into a performance:

fromMusic :: PlayerMap -> Context -> Music.T -> T

type PlayerMap = PlayerName -> PlayerT
data Context =

Context {cTime :: Time, cPlayer :: PlayerT, cInstrument :: IName,
cDur :: Dur, cKey :: Key, cVelocity :: Velocity}

deriving Show

type UpdateContext a = (a -> a) -> Context -> Context

updateTime :: UpdateContext Time
updateTime f c = c {cTime = f (cTime c)}
updatePlayer :: UpdateContext PlayerT
updatePlayer f c = c {cPlayer = f (cPlayer c)}
updateInstrument :: UpdateContext IName
updateInstrument f c = c {cInstrument = f (cInstrument c)}
updateDur :: UpdateContext Dur
updateDur f c = c {cDur = f (cDur c)}
updateKey :: UpdateContext Key
updateKey f c = c {cKey = f (cKey c)}
updateVelocity :: UpdateContext Velocity
updateVelocity f c = c {cVelocity = f (cVelocity c)}

type Key = Pitch.Absolute

romMusic pmap c@Context {cTime = t, cPlayer = pl, cDur = dt, cKey = k} m =
case m of

Note p d nas -> playNote pl c p d nas
Rest d -> []
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m1 :+: m2 -> fromMusic pmap c m1 ++
fromMusic pmap (c {cTime = t + dur m1 * dt}) m2

m1 :=: m2 -> merge (fromMusic pmap c m1) (fromMusic pmap c m2)
Tempo a m -> fromMusic pmap (c {cDur = dt / fromRational a}) m
Transpose p m -> fromMusic pmap (c {cKey = k + p}) m
Instrument nm m -> fromMusic pmap (c {cInst = nm}) m
Player nm m -> fromMusic pmap (c {cPlayer = pmap nm}) m
Phrase pas m -> interpPhrase pl pmap c pas m

Some things to note:

1. TheContext is the running “state” of the performance, and gets updated in several different ways.
For example, the interpretation of theTempo constructor involves scalingdt appropriately and up-
dating theDur field of the context.

It’s better not to manipulate the members ofContext directly, but to use the abstractions from
PerformanceContext . This way one can stay independent of the concrete definition of
Context . (I would like to define this data structure inPerformanceContext but the current
Haskell compilers forbid mutually dependent modules.)

2. Interpretation of notes and phrases is player dependent. Ultimately a single note is played by the
playNote function, which takes the player as an argument. Similarly, phrase interpretation is also
player dependent, reflected in the use ofinterpPhrase . Precisely how these two functions work
is described in Section5.

3. TheDur component of the context is the duration, in seconds, of one whole note. See Section3.10
for assisting functions.

4. In the treatment ofSerial , note that the sub-sequences are appended together, with the start time of
the second argument delayed by the duration of the first. The functiondur (defined in Section3.4) is
used to compute this duration. Note that this results in a quadratic time complexity forfromMusic .
A more efficient solution is to havefromMusic compute the duration directly, returning it as part of
its result. This version offromMusic is shown in Figure9.

5. In contrast, the sub-sequences derived from the arguments toParallel are merged into a time-
ordered stream. The definition ofmerge is given below.

merge, mergeFirst :: (T, Dur) -> (T, Dur) -> (T, Dur)

{- merge two performances provided that e0 is earlier than e1 -}
mergeFirst (e0:es0, ld0) (evs1, ld1) =

let (es, ld) = merge (es0, ld0)
( case evs1 of

e1:es1 -> (e1{eTime = eTime e1 - eTime e0} : es1, ld1)
[] -> ([], max 0 (ld1 - eTime e0)))

in (e0 : es, ld)
mergeFirst _ _ = error "mergeFirst should never fail this way."
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fromMusic pmap c m = events (fromMusic’ pmap c m)

{- lastDur is the duration after the last event
after which the performance finishes .
This need not to be the duration of the last event ,
as in the case , where the last note is a short one ,
that is played while an earlier long one remains playing . -}

data T’ = C’ {events :: T,
duration, lastDur :: Dur}

deriving ( Show, Eq)

fromMusic’ :: PlayerMap -> Context -> Music.T -> T’

fromMusic’ pmap c@Context {cTime = t, cPlayer = pl, cDur = dt, cKey = k} =
Music.foldBinFlat

(\d at ->
let noteDur = fromRational d * dt
in case at of

Music.Note p nas -> C’ (playNote pl c p d nas) noteDur noteDur
Music.Rest -> C’ [] noteDur (t + noteDur))

(\ctrl m ->
case ctrl of

Music.Tempo a -> fromMusic’ pmap (c {cDur = dt / fromRational a}) m
Music.Transpose p -> fromMusic’ pmap (c {cKey = k + p}) m
Music.Instrument nm -> fromMusic’ pmap (c {cInstrument = nm}) m
Music.Player nm -> fromMusic’ pmap (c {cPlayer = pmap nm}) m
Music.Phrase pa -> interpPhrase pl pmap c pa m)

{- I didn ’ t succeed with a formulation using fold or similar functions .
foldl works in principle but fails on infinite streams . -}

(\m0 m1 -> let C’ ev0 d0 ld0 = fromMusic’ pmap c m0
C’ ev1 d1 ld1 = fromMusic’ pmap (c {cTime = ld0}) m1

in C’ (ev0 ++ ev1) (d0 + d1) ld1)
(\m0 m1 -> let C’ ev0 d0 ld0 = fromMusic’ pmap c m0

C’ ev1 d1 ld1 = fromMusic’ pmap c m1
(ev, ld) = merge (ev0, ld0) (ev1, ld1)

in C’ ev ( max d0 d1) ld)
(C’ [] 0 t)

Figure 9: The “real”fromMusic function.
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merge pf0@(e0:_, _) pf1@(e1:_, _) =
if e0 <= e1 then mergeFirst pf0 pf1

else mergeFirst pf1 pf0
merge ([], ld0) ([], ld1) = ([], max ld0 ld1)
merge pf0@([], _) pf1 = mergeFirst pf1 pf0
merge pf0 pf1@([], _) = mergeFirst pf0 pf1

Note thatmerge compares entire events rather than just start times. This is to ensure that it is commutative,
a desirable condition for some of the proofs used in Section4.1. It is also necessary to assert a unique
representation of the performance independent of the structure of theMusic.T .

The functionpartition is somehow the inverse tomerge . It is similar toList.partition . We
could use the List function if the event times were absolute, because then the events need not to be altered on
splits. But absolute time points can’t be used for infinite music thus we take the burden of adapting the time
differences when an event is removed from the performance list and put to the list of events of a particular
instrument.t0 is the time gone since the last event in the first partition,t1 is the time gone since the last
event in the second partition.

Note, that we must usefst esp andsnd esp in the definition ofins0 and ins1 . If we declare
ins0 (es0,es1) = . . . then the run-time system would wait until it is sure thatpartition returns
a pair and not Bottom.

partition :: (Event -> Bool ) -> Time -> Time ->
[Event] -> ([Event], [Event])

partition _ _ _ [] = ([], [])
partition p t0 t1 (e:es) =

let t0’ = t0 + eTime e
t1’ = t1 + eTime e
ins0 esp = (e {eTime = t0’} : fst esp, snd esp)
ins1 esp = ( fst esp, e {eTime = t1’} : snd esp)

in if p e
then ins0 ( partition p 0 t1’ es)
else ins1 ( partition p t0’ 0 es)

Since we need it later for MIDI generation, we will also define a slicing into equivalence classes of
events.

slice :: Eq a => (Event -> a) -> T -> [(a, T)]
slice f perf =

let splitByHeadInst [] = Nothing
splitByHeadInst pf =

let i = f ( head pf)
(pf0, pf1) = partition ((i==) . f) 0 0 pf

in Just ((i,pf0), pf1)
in unfoldr splitByHeadInst perf

usedInstruments :: T -> [Music.IName]
usedInstruments = map fst . slice eInst
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4.1 Equivalence of Literal Performances

A literal performanceis one in which no aesthetic interpretation is given to a musical object. The function
Pf.fromMusic in fact yields a literal performance; aesthetic nuances must be expressed explicitly using
note and phrase attributes.

There are many musical objects whose literal performances we expect to beequivalent. For example,
the following two musical objects are certainly not equal as data structures, but we would expect their literal
performances to be identical:

(m1 :+: m2) :+: (m3 :+: m4)
m1 :+: m2 :+: m3 :+: m4

Thus we define a notion of equivalence:

7 Definition. Two musical objectsm1andm2areequivalent, writtenm1≡ m2, if and only if:

(∀imap,c ) Pf.fromMusic imap c m1 = Pf.fromMusic imap c m2

where “=” is equality on values (which in Haskell is defined by the underlying equational logic).

One of the most useful things we can do with this notion of equivalence is establish the validity of
certaintransformationson musical objects. A transformation isvalid if the result of the transformation is
equivalent (in the sense defined above) to the original musical object; i.e. it is “meaning preserving”. Some
of these connections are used in the moduleOptimization (Section7.1) in order to simplify a musical
data structure.

The most basic of these transformation we treat asaxiomsin analgebra of music. For example:

8 Axiom. For anyr1 , r2 , andm:

Tempo r1 (Tempo r2 m) ≡ Tempo (r1*r2) m

To prove this axiom, we use conventional equational reasoning (for clarity we omitimap , simplify the
context to justdt , and omitfromRational ):

Proof.

Pf.fromMusic dt (Tempo r1 (Tempo r2 m))
= Pf.fromMusic (dt / r1) (Tempo r2 m) -- unfolding Pf . fromMusic
= Pf.fromMusic ((dt / r1) / r2) m -- unfolding Pf . fromMusic
= Pf.fromMusic (dt / (r1 * r2)) m -- simple arithmetic
= Pf.fromMusic dt (Tempo (r1*r2) m) -- folding Pf . fromMusic
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Here is another useful transformation and its validity proof (for clarity in the proof we omitimap and
simplify the context to just(t,dt) ):

9 Axiom. For anyr , m1, andm2:

Tempo r (m1 :+: m2) ≡ Tempo r m1 :+: Tempo r m2

In other words,tempo scaling distributes over sequential composition.

Proof.

Pf.fromMusic (t,dt) (Tempo r (m1 :+: m2))
= Pf.fromMusic (t,dt/r) (m1 :+: m2) -- unfolding Pf . fromMusic
= Pf.fromMusic (t,dt/r) m1 ++

Pf.fromMusic (t’,dt/r) m2 -- unfolding Pf . fromMusic
= Pf.fromMusic (t,dt) (Tempo r m1) ++

Pf.fromMusic (t’,dt) (Tempo r m2) -- folding Pf . fromMusic
where t’ = t + dur m1 * dt/r

= Pf.fromMusic (t,dt) (Tempo r m1) ++
Pf.fromMusic (t’’,dt) (Tempo r m2) -- folding dur

where t’’ = t + dur (Tempo r m1) * dt
= Pf.fromMusic (t,dt)

(Tempo r m1 :+: Tempo r m2) -- folding Pf . fromMusic

An even simpler axiom is given by:

10 Axiom. For anym:

Tempo 1 m ≡ m

In other words,unit tempo scaling is the identity.

Proof.

Pf.fromMusic (t,dt) (Tempo 1 m)
= Pf.fromMusic (t,dt/1) m -- unfolding Pf . fromMusic
= Pf.fromMusic (t,dt) m -- simple arithmetic

Note that the above proofs, being used to establish axioms, all involve the definition of
Pf.fromMusic . In contrast, we can also establishtheoremswhose proofs involve only the axioms. For
example, Axioms 1, 2, and 3 are all needed to prove the following:
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Figure 10: Equivalent Phrases

11 Theorem. For anyr , m1, andm2:

Tempo r m1 :+: m2 ≡ Tempo r (m1 :+: Tempo (recip r) m2)

Proof.

Tempo r (m1 :+: Tempo ( recip r) m2)
= Tempo r m1 :+: Tempo r (Tempo ( recip r) m2) -- by Axiom 1
= Tempo r m1 :+: Tempo (r * recip r) m2 -- by Axiom 2
= Tempo r m1 :+: Tempo 1 m2 -- simple arithmetic
= Tempo r m1 :+: m2 -- by Axiom 3

For example, this fact justifies the equivalence of the two phrases shown in Figure10.

Many other interesting transformations of Haskore musical objects can be stated and proved correct
using equational reasoning. We leave as an exercise for the reader the proof of the following axioms (which
include the above axioms as special cases).

12 Axiom. Tempo is multiplicativeandTranspose is additive. That is, for anyr1 , r2 , p1 , p2 , andm:

Tempo r1 (Tempo r2 m) ≡ Tempo (r1*r2) m
Trans p1 (Trans p2 m) ≡ Trans (p1+p2) m

13 Axiom. Function composition iscommutativewith respect to both tempo scaling and transposition. That
is, for anyr1 , r2 , p1 andp2 :

Tempo r1 . Tempo r2 ≡ Tempo r2 . Tempo r1
Trans p1 . Trans p2 ≡ Trans p2 . Trans p1
Tempo r1 . Trans p1 ≡ Trans p1 . Tempo r1

14 Axiom. Tempo scaling and transposition aredistributiveover both sequential and parallel composition.
That is, for anyr , p, m1, andm2:

Tempo r (m1 :+: m2) ≡ Tempo r m1 :+: Tempo r m2
Tempo r (m1 :=: m2) ≡ Tempo r m1 :=: Tempo r m2
Trans p (m1 :+: m2) ≡ Trans p m1 :+: Trans p m2
Trans p (m1 :=: m2) ≡ Trans p m1 :=: Trans p m2
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15 Axiom. Sequential and parallel composition areassociative. That is, for anym0, m1, andm2:

m0 :+: (m1 :+: m2) ≡ (m0 :+: m1) :+: m2
m0 :=: (m1 :=: m2) ≡ (m0 :=: m1) :=: m2

16 Axiom. Parallel composition iscommutative. That is, for anym0andm1:

m0 :=: m1 ≡ m1 :=: m0

17 Axiom. Rest 0 is a unit for Tempo andTrans , and azerofor sequential and parallel composition.
That is, for anyr , p, andm:

Tempo r (Rest 0) ≡ Rest 0
Trans p (Rest 0) ≡ Rest 0

m :+: Rest 0 ≡ m ≡ Rest 0 :+: m
m :=: Rest 0 ≡ m ≡ Rest 0 :=: m

18 Exercise.Establish the validity of each of the above axioms.

5 Players

In the last section we saw how a performance involved the notion of aplayer. The reason for this is the
same as for real players and their instruments: many of the note and phrase attributes (see Section3.7) are
player and instrument dependent. For example, how should “legato” be interpreted in a performance? Or
“diminuendo”? Different players interpret things in different ways, of course, but even more fundamental is
the fact that a pianist, for example, realizes legato in a way fundamentally different from the way a violinist
does, because of differences in their instruments. Similarly, diminuendo on a piano and a harpsichord are
different concepts.

With a slight stretch of the imagination, we can even consider a “notator” of a score as a kind of player:
exactly how the music is rendered on the written page may be a personal, stylized process. For example,
how many, and which staves should be used to notate a particular instrument?

In any case, to handle these issues, Haskore has a notion of aplayer which “knows” about differences
with respect to performance and notation. A Haskore player is a 4-tuple consisting of a name and three
functions: one for interpreting notes, one for phrases, and one for producing a properly notated score.

data PlayerT = PlayerC { name :: PlayerName,
playNote :: NoteFun,
interpPhrase :: PhraseFun,
notatePlayer :: NotateFun }

instance Show PlayerT where
show p = "Player.c " ++ name p

type NoteFun =
Context -> Pitch.T -> Music.Dur -> [NoteAttribute] -> T
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type PhraseFun =
PlayerMap -> Context -> PhraseAttribute -> Music.T -> T’

type NotateFun = ()

The last line above is because notation is currently not implemented. Note that bothNotateFun and
PhraseFun functions return aPerformance.T .

6 Interfaces to other musical software

6.1 Midi

Midi (“musical instrument digital interface”) is a standard protocol adopted by most, if not all, manufacturers
of electronic instruments. At its core is a protocol for communicatingmusical events(note on, note off, key
press, etc.) as well as so-calledmeta events(select synthesizer patch, change volume, etc.). Beyond the
logical protocol, the Midi standard also specifies electrical signal characteristics and cabling details. In
addition, it specifies what is known as astandard Midi filewhich any Midi-compatible software package
should be able to recognize.

Over the years musicians and manufacturers decided that they also wanted a standard way to refer to
commonor generalinstruments such as “acoustic grand piano”, “electric piano”, “violin”, and “acoustic
bass”, as well as more exotic ones such as “chorus aahs”, “voice oohs”, “bird tweet”, and “helicopter”. A
simple standard known asGeneral Midiwas developed to fill this role. It is nothing more than an agreed-
upon list of instrument names along with aprogram patch numberfor each, a parameter in the Midi standard
that is used to select a Midi instrument’s sound.

Most “sound-blaster”-like sound cards on conventional PC’s know about Midi, as well as General Midi.
However, the sound generated by such modules, and the sound produced from the typically-scrawny speak-
ers on most PC’s, is often quite poor. It is best to use an outboard keyboard or tone generator, which are
attached to a computer via a Midi interface and cables. It is possible to connect several Midi instruments to
the same computer, with each assigned a differentchannel. Modern keyboards and tone generators are quite
amazing little beasts. Not only is the sound quite good (when played on a good stereo system), but they are
also usuallymulti-timbral, which means they are able to generate many different sounds simultaneously, as
well aspolyphonic, meaning that simultaneous instantiations of the same sound are possible.

If you decide to use the General Midi features of your sound-card, you need to know about another set
of conventions known as “Basic Midi”. The most important aspect of Basic Midi is that Channel 10 (9 in
Haskore’s 0-based numbering) is dedicated topercussion. A future release of Haskore should make these
distinctions more concrete.

Haskore provides a way to specify a Midi channel number and General Midi instrument selection for
eachIName in a Haskore composition. It also provides a means to generate a Standard Midi File, which
can then be played using any conventional Midi software. Finally, it provides a way for existing Midi files
to be read and converted into aMusic.T object in Haskore. In this section the top-level code needed by
the user to invoke this functionality will be described, along with the gory details.

module Haskore.Interface.MIDI.Write
(fromPerformance, fromPerformanceGM,
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fromPerformanceMixed, fromPerformanceMixedGM,
fromMusic, fromMusicGM,
fromMusicMixed, fromMusicMixedGM,
volumeHaskoreToMIDI, volumeMIDIToHaskore)

where

import Haskore.General.Utility(roundDiff)
import Data.FiniteMap(lookupFM, addToFM, emptyFM)
import Control. Monad.State(evalState,mapState, zipWithM )
import qualified Control. Monad.State as State

import Haskore.Music.Performance(Event, eTime, ePitch, eDur, eVel, eInst)
import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.Interface.MIDI.UserPatchMap as UserPatchMap

import qualified Haskore.Music as Music
import qualified Haskore.Music.Performance as Performance
import qualified Haskore.Music.PerformanceContext as Context
import qualified Haskore.Music.Player as Player

Instead of converting a HaskorePerformance.T directly into a Midi file, Haskore first converts it
into a datatype thatrepresentsa Midi file, which is then written to a file in a separate pass. This separation
of concerns makes the structure of the Midi file clearer, makes debugging easier, and provides a natural path
for extending Haskore’s functionality with direct Midi capability.

Here is the basic structure of the key modules (*) and functions (=):

*LoadMidi* *ReadMidi*
+------+ =fromFile= +-----------+ =toMusic= +-----------+
| MIDI |----------------->| MidiFile |---------------->| Music.T |
| File | | data type | | data type |
| |<-----------------| |<----------------| |
+------+ +-----------+ *Performance* +-----------+

*SaveMidi* *MidiFile* *Haskore.Interface.MIDI.Write* *Music*
=toFile= =fromMusic=

Given aUserPatchMap.T (Section6.1.2), a performance is converted to a datatype representing a
Standard Midi File of type 1 (tracks played simultaneously) using thefromPerformance function. In
contrast to that, the functionfromPerformanceGM creates a newUserPatchMap.T by matching the
instrument names with General Midi names and mapping the instruments to channels one by one.

The “Mixed ” functions create files of MIDI type 0 that is there is one track containing the whole music.
This is the only mode which can be used for infinite music since the number of tracks is stored explicitly in
the MIDI file which depends on the number of instruments actually used in the song.

fromPerformance, fromPerformanceMixed ::
UserPatchMap.T -> Performance.T -> MidiFile.T
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fromPerformanceGM, fromPerformanceMixedGM ::
Performance.T -> MidiFile.T

fromPerformance = fromPerformanceBase . const

fromPerformanceGM = fromPerformanceBase (UserPatchMap.fromInstruments . map fst )

fromPerformanceBase makePMap pf =
let splitList = Performance.slice eInst pf

pMap = makePMap splitList
lookupIName = UserPatchMap. lookup pMap

in MidiFile.C MidiFile.Parallel (MidiFile.Ticks division)
( zipWith performToMEvs

( map ( const . lookupIName . fst ) splitList)
( map snd splitList))

fromPerformanceBase, fromPerformanceMixedBase ::
([(Music.IName, Performance.T)] -> UserPatchMap.T)

-> Performance.T -> MidiFile.T

fromPerformanceMixed =
fromPerformanceMixedBase . const

fromPerformanceMixedGM =
fromPerformanceMixedBase (UserPatchMap.fromInstruments . map fst )

fromPerformanceMixedBase makePMap pf =
let pMap = makePMap (Performance.slice eInst pf)
in MidiFile.C MidiFile.Mixed (MidiFile.Ticks division)

[performToMEvs (UserPatchMap. lookup pMap) pf]

The more comfortable functionfromMusic turns aMusic.T immediately into aMidiFile.T .
Thus it needs also aContext and aUserPatchMap.T . The signature is chosen so that it can be
used as an inverse toReadMidi.toMusic . The functionfromMusicGM is similar but doesn’t need
aUserPatchMap.T because it creates one from the set of instruments actually used in theMusic.T .

fromMusic, fromMusicMixed ::
(UserPatchMap.T, Context.T, Music.T) -> MidiFile.T

fromMusicGM, fromMusicMixedGM ::
(Context.T, Music.T) -> MidiFile.T

fromMusic (upm,c,m) = fromMusicBase (fromPerformance upm) c m
fromMusicGM (c,m) = fromMusicBase fromPerformanceGM c m
fromMusicMixed (upm,c,m) = fromMusicBase (fromPerformanceMixed upm) c m
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fromMusicMixedGM (c,m) = fromMusicBase fromPerformanceMixedGM c m

fromMusicBase :: (Performance.T -> MidiFile.T) ->
Context.T -> Music.T -> MidiFile.T

fromMusicBase p c m = p (Performance.fromMusic Player.fancyMap c m)

A table of General Midi assignments calledGeneralMidi.map is imported fromGeneralMidi in
Section6.1.7. The Midi file datatype itself is imported from the moduleMidiFile , functions for writing
it to files are found in the moduleSaveMidi , and functions for reading MIDI files come from the modules
LoadMidi andReadMidi . All these modules are described later in this section.

6.1.1 The Gory Details

Some preliminaries, otherwise known as constants:

division :: Int
division = 96 -- time - code division : 96 ticks per quarter note

When writing Type 1 Midi Files, we can associate each instrument with a separate track. So first we
partition the event list into separate lists for each instrument. (Again, due to the limited number of MIDI
channels, we can handle no more than 15 instruments.)

The crux of the conversion process isperformToMEvs , which converts aPerformance.T into a
stream ofMEvents .

As said before, we can’t use absolute times, but when converting the relative performance event times
(Float ) to the relative midi event times (Int ) we have to prevent accumulated rounding errors. We avoid
this problem with a stateful conversion which remembers each rounding error we make. This rounding
error is used to correct the next rounding. Given the relative time and duration of a note the function
roundTime createsState which computes both the rounded time and the rounded duration. Both of
them are corrected by previous rounding errors. The termroundDiff t computes the rounding state
for the time rounding only. The functionmapState is used to apply the rounding error to the duration
conversion, while preserving the state of the rounding error for subsequent conversions.

We manage aFiniteMap which stores the active program number of each MIDI channel. If a note on
a channel needs a new program or there was no note before, aProgChange is inserted in the stream of
MIDI events. The functionupdateChannelMap updates this map each time a note occurs and it returns
the MIDI channel for the note and aMaybe that contains a program change if necessary.

type PatchMap = Music.IName -> (MidiFile.Channel, MidiFile.Program)

performToMEvs :: PatchMap -> Performance.T -> [MidiFile.Event]
performToMEvs pMap pf =

let setTempo = (0, MidiFile.MetaEvent (MidiFile.SetTempo MidiFile.defltST))

times = map (toDelta . eTime) pf
durs = map (toDelta . eDur) pf
roundTime d t = mapState (\(t’,frac) -> ((t’, round (frac+d)),frac))
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(roundDiff t)
midiTimeDurs = evalState ( zipWithM roundTime durs times) 0

updateChannelMap (midiChan, progNum) cm =
if Just progNum == lookupFM cm midiChan
then ((midiChan, Nothing ), cm)
else ((midiChan, Just (MidiFile.MidiEvent midiChan

(MidiFile.ProgChange progNum))),
addToFM cm midiChan progNum)

midiChannels =
evalState ( mapM (State.State .

updateChannelMap . pMap . eInst) pf) emptyFM

midiEventPairs = map mkMEvents pf

loop [] [] [] = []
loop ((t,d):tds) ((me0,me1):meps) ((chan,progChange):chans) =

let mec0 = MidiFile.MidiEvent chan me0
mec1 = MidiFile.MidiEvent chan me1

in maybe ((t, mec0) :)
(\pcME -> ((t, pcME) :) . ((0, mec0) :))
progChange
(insertMEvent (d, mec1) (loop tds meps chans))

loop _ _ _ = error "Number of durations and number of events will always match."
in setTempo : loop midiTimeDurs midiEventPairs midiChannels

A source of incompatibility between Haskore and Midi is that Haskore represents notes with an onset
and a duration, while Midi represents them as two separate events, an note-on event and a note-off event.
ThusMkMEvents turns a HaskoreEvent into twoMEvents , aNoteOn and aNoteOff .

mkMEvents :: Performance.Event -> (MidiFile.MidiEvent, MidiFile.MidiEvent)
mkMEvents (Performance.Event {ePitch = p, eVel = v}) =

let v’ = round ( max 0 $ min 127 $ v*64)
-- adjust frequency with respect to default piano
midiP = p + MidiFile.zeroKey
checkedP =

if midiP<0
then error ("pitch " ++ show midiP ++ " must not be negative")
else if midiP>127

then error ("pitch " ++ show midiP ++ " must be below 128")
else midiP

in (MidiFile.NoteOn checkedP v’, MidiFile.NoteOff checkedP v’)

toDelta :: ( Num a) => a -> a
toDelta t = t * 2 * fromIntegral division
-- ˆ compensate defltDurT
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The final critical function isinsertMEvent , which inserts anMidiFile.Event into an already
time-ordered sequence ofMEvents . It is used to insert aNoteOff event into a list ofNoteOn and
NoteOff events.

It looks a bit cumbersome to insert every singleNoteOff into the remaining list of events. An alter-
native may be tomerge the list of NoteOn events with the list ofNoteOff events. This won’t work
because the second one isn’t ordered. Instead one could merge the two-element lists defined byNoteOn
andNoteOff for each note usingfold . But there might be infinitely many notes . . .

insertMEvent :: MidiFile.Event -> [MidiFile.Event] -> [MidiFile.Event]
insertMEvent mev0 [] = [mev0]
insertMEvent mev0@(t0, me0) (mev1@(t1, me1) : mevs) =

if mev0 <= mev1
then mev0 : (t1-t0, me1) : mevs
else mev1 : insertMEvent (t0-t1, me0) mevs

***** The MIDI volume handling is still missing. One cannot express the Volume in terms of the
velocity! Thus we need some new event constructor for changed controller values. *****

volumeHaskoreToMIDI :: ( RealFrac a, Floating a) => a -> Int
volumeHaskoreToMIDI v = round ( max 0 $ min 127 $ 64 + 16 * logBase 2 v)

volumeMIDIToHaskore :: Floating a => Int -> a
volumeMIDIToHaskore v = 2 ** (( fromIntegral v - 64) / 16)

6.1.2 User patch map

module Haskore.Interface.MIDI.UserPatchMap where

import Data. Char ( toLower )
import Data. List ( find )

import qualified Haskore.Music as Music
import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.Interface.MIDI.General as GeneralMidi

A UserPatchMap.T is a user-supplied table for mapping instrument names (INames) to Midi chan-
nels and General Midi patch names. The patch names are by default General Midi names, although the user
can also provide aPatchMap for mapping Patch Names to unconventional Midi Program Change numbers.

type T = [(Music.IName, (MidiFile.Channel, MidiFile.Program))]

The allValid is used to test whether or not every instrument in a list is found in a
UserPatchMap.T .

repair :: [Music.IName] -> T -> T
repair insts pMap =
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if allValid pMap insts
then pMap
else fromInstruments insts

allValid :: T -> [Music.IName] -> Bool
allValid upm = all (\x -> any (partialMatch x . fst ) upm)

If a Haskore user only uses General Midi instrument names asINames, we can define a function that
automatically creates aUserPatchMap.T from these names. Note that, since there are only 15 Midi
channels plus percussion, we can handle only 15 instruments. Perhaps in the future a function could be
written to test whether or not two tracks can be combined with a Program Change (tracks can be combined
if they don’t overlap).

fromInstruments :: [Music.IName] -> T
fromInstruments = fromInstruments’ 0

where fromInstruments’ _ [] = []
fromInstruments’ n (i:is) =

if n>=15 then
error "Too many instruments; not enough MIDI channels."

else
if map toLower i ‘ elem ‘ percList
then (i, (9, 0))

: fromInstruments’ n is
else (i, (chanList !! n,

Haskore.Interface.MIDI.UserPatchMap. lookup
GeneralMidi. map i))

: fromInstruments’ (n+1) is
percList = ["percussion", "perc", "drums"]
chanList = [0..8] ++ [10..15] -- 10th channel (#9) is for percussion

The following functions lookupINames in UserPatchMap.T s to recover channel and program
change numbers. Note that the function that does string matching ignores case, and allows substring
matches. For example,"chur" matches"Church Organ" . Note also that thefirst match succeeds,
so using a substring should be done with care to be sure that the correct instrument is selected.

partialMatch :: String -> String -> Bool
partialMatch "piano" "Acoustic Grand Piano" = True
partialMatch s1 s2 =

let s1’ = map toLower s1
s2’ = map toLower s2
len = min ( length s1) ( length s2)

in take len s1’ == take len s2’

lookup :: [( String , a)] -> String -> a
lookup ys x =

maybe ( error ("UserPatchMap.lookup: Instrument " ++ x ++ " unknown"))
snd ( find (partialMatch x . fst ) ys)
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A defaultUserPatchMap.T . Note: the PC sound card I’m using is limited to 9 instruments.

deflt :: T
deflt =

map (\(iName, gmName, chan) ->
(iName, (chan, Haskore.Interface.MIDI.UserPatchMap. lookup

GeneralMidi. map gmName)))
[("piano","Acoustic Grand Piano",1),

("vibes","Vibraphone",2),
("bass","Acoustic Bass",3),
("flute","Flute",4),
("sax","Tenor Sax",5),
("guitar","Acoustic Guitar (steel)",6),
("violin","Viola",7),
("violins","String Ensemble 1",8),
("drums","Acoustic Grand Piano",9)]

-- the GM name for drums is unimportant , only channel 9

6.1.3 Midi-File Datatypes

module Haskore.Interface.MIDI.File(
T(..), Division(..), Track, Type(..), Event, Event’(..), ElapsedTime,
Pitch, ControlNum, PBRange, Program, Pressure,
Channel, ControlVal, Velocity,
MidiEvent(..),
Tempo, SMPTEHours, SMPTEMins, SMPTESecs, SMPTEFrames, SMPTEBits,
MetaEvent(..),
Key(..), Mode(..),

defltST, defltDurT, zeroKey, empty,
showLines, changeVelocity, getTracks, resampleTime,
sortEvents, progChangeBeforeSetTempo

) where

import Data. Ix ( Ix )
import Data. List ( sort , groupBy )

data T = C Type Division [Track] deriving ( Show, Eq)

data Type = Mixed | Parallel | Serial
deriving ( Show, Eq, Enum)

data Division = Ticks Int | SMPTE Int Int
deriving ( Show, Eq)

type Track = [Event]
type Event = (ElapsedTime, Event’)
type ElapsedTime = Int
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data Event’ = MidiEvent Channel MidiEvent
| MetaEvent MetaEvent
| SysExStart String -- F0
| SysExCont String -- F7

deriving ( Show, Eq, Ord )

type Pitch = Int
type Velocity = Int
type ControlNum = Int
type PBRange = Int
type Program = Int
type Pressure = Int
type Channel = Int
type ControlVal = Int

data MidiEvent = NoteOff Pitch Velocity
| NoteOn Pitch Velocity
| PolyAfter Pitch Pressure
| ProgChange Program
| Control ControlNum ControlVal
| PitchBend PBRange
| MonoAfter Pressure

deriving ( Show, Eq, Ord )

type Tempo = Int
type SMPTEHours = Int
type SMPTEMins = Int
type SMPTESecs = Int
type SMPTEFrames = Int
type SMPTEBits = Int

data MetaEvent = SequenceNum Int
| TextEvent String
| Copyright String
| TrackName String
| InstrName String
| Lyric String
| Marker String
| CuePoint String
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| MIDIPrefix Channel
| EndOfTrack
| SetTempo Tempo
| SMPTEOffset SMPTEHours SMPTEMins SMPTESecs SMPTEFrames SMPTEBits
| TimeSig Int Int Int Int
| KeySig Key Mode
| SequencerSpecific [ Int ]
| Unknown String

deriving ( Show, Eq, Ord )

The following enumerated type lists all the keys in order of their key signatures from flats to sharps. (Cf
= 7 flats, Gf = 6 flats ... F = 1 flat, C = 0 flats/sharps, G = 1 sharp, ... Cs = 7 sharps.) Useful for transposition.

data Key = KeyCf | KeyGf | KeyDf | KeyAf | KeyEf | KeyBf | KeyF
| KeyC | KeyG | KeyD | KeyA | KeyE | KeyB | KeyFs | KeyCs

deriving ( Eq, Ord , Ix , Enum, Show)

The Key Signature specifies a mode, either major or minor.

data Mode = Major | Minor
deriving ( Show, Eq, Ord , Enum)

Default duration of a whole note, in seconds; and the default SetTempo value, in microseconds per
quarter note. Both express the default of 120 beats per minute.

defltDurT :: Int
defltDurT = 2
defltST :: Int
defltST = div 1000000 defltDurT

A MIDI problem is that one cannot uniquely map a MIDI key to a frequency. The frequency depends
on the instrument. I don’t know if the deviations are defined for General MIDI. If this applies one could
add transposition information to the use patch map. For now I have chosen a value that leads to the right
frequency for some piano sound in my setup.

zeroKey :: Pitch
zeroKey = 48

An empty MIDI file.

empty :: T
empty = C Mixed (Ticks 0) [[]]

Some routines for debugging of Midi data Show theFile.T with one event per line, suited for com-
paring MidiFiles with ’diff’. Can this be replaced byLoadMidi.showMidiFile ?
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showLines :: T -> String
showLines (C mfType division tracks) =

let showTrack track =
" (\n" ++
unlines ( map (\event -> " " ++ show event ++ " :") track) ++
" []) :\n"

in "MidiFile.C " ++ show mfType ++ " (" ++ show division ++ ") (\n" ++
concatMap showTrack tracks ++
" [])"

A hack that changes the velocities by a rational factor.

changeVelocity :: Double -> T -> T
changeVelocity r (C mfType division tracks) =

let multVel vel = round (r * fromIntegral vel)
procMidiEvent (NoteOn pitch vel) = NoteOn pitch (multVel vel)
procMidiEvent (NoteOff pitch vel) = NoteOff pitch (multVel vel)
procMidiEvent me = me
procEvent (time, MidiEvent chan ev) =

(time, MidiEvent chan (procMidiEvent ev))
procEvent ev = ev

in C mfType division ( map ( map procEvent) tracks)

Changing the time base.

resampleTime :: Double -> T -> T
resampleTime r (C mfType division tracks) =

let divTime time = round ( fromIntegral time / r)
procEvent (0, MetaEvent (SetTempo t)) =

(0, MetaEvent (SetTempo ( round ( fromIntegral t * r))))
procEvent (_, MetaEvent (SetTempo _)) =

error "SetTempo can be handled only at time 0"
procEvent (time, ev) = (divTime time, ev)

in C mfType division ( map ( map procEvent) tracks)

getTracks :: T -> [Track]
getTracks (C _ _ trks) = trks

Sort MIDI note events lexicographically. This is to make MIDI files unique and robust against changes
in the computation. In principle Performance.merge should handle this but due to rounding errors in Float
the order of note events still depends on some internal issues. The sample rate of MIDI events should be
coarse enough to assert unique results.

sortEvents :: T -> T
sortEvents (C mfType division tracks) =

let isNote (NoteOn _ _) = True
isNote (NoteOff _ _) = True
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isNote _ = False
coincideNote (_, MidiEvent _ x0) (t1, MidiEvent _ x1) =

t1 == 0 && isNote x0 && isNote x1
coincideNote _ _ = False
sortTime mes =

let (me’:mes’) = sort ( map snd mes)
in ( fst ( head mes), me’) : map (\me->(0,me)) mes’

sortTrack = concatMap sortTime . groupBy coincideNote
in C mfType division ( map sortTrack tracks)

Old versions of moduleWriteMidi wroteProgramChange andSetTempo once at the beginning
of a file in that order. The current version supports multipleProgramChange s in a track and thus a
ProgramChange is set immediately before a note. Because of this aProgramChange is now always
after aSetTempo . For checking equivalence with old MIDI files we can switch this back.

progChangeBeforeSetTempo :: T -> T
progChangeBeforeSetTempo (C mfType division tracks) =

let sortTrack ((t0, st@(MetaEvent (SetTempo _))) :
(t1, pc@(MidiEvent _ (ProgChange _))) :
(t2, me2) : mes) =

(t0, pc) : (0, st) : (t1+t2, me2) : mes
sortTrack ((t0, st@(MetaEvent (SetTempo _))) :

(_, pc@(MidiEvent _ (ProgChange _))) : mes) =
(t0, pc) : (0, st) : mes

sortTrack mes = mes
in C mfType division ( map sortTrack tracks)

6.1.4 Saving MIDI Files

The functions in this module allowMidiFile.T s to be made into Standard MIDI files (*.mid) that can be
read and played by music programs such as Cakewalk.

module Haskore.Interface.MIDI.Save (toFile, toStream, toOpenStream) where

import Data. Char ( chr )
import Data. Ix
import Control. Monad.Writer (Writer, tell, execWriter)
import IOExtensions (writeBinaryFile)

import Haskore.Interface.MIDI.File
import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.General.Bit as Bit

The functionSaveMidi.toFile is the main function for writingMidiFile values to an actual file;
its first argument is the filename:
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toFile :: FilePath -> MidiFile.T -> IO ()
toFile fn mf = writeBinaryFile fn (toStream mf)

19 Exercise. Take as many examples as you like from the previous sections, create one or more
UserPatchMap s, write the examples to a file, and play them using a conventional Midi player.

SectionA defines some functions which should make the above exercise easier. SectionsB.1, B.2, and
B.3 contain more extensive examples.

Midi files are first converted to a monadic string computation using the functionoutMF , and then
”executed” usingrunM :: MidiWriter a -> String .

toStream, toOpenStream :: MidiFile.T -> String
toStream = execWriter . outMF outChunk
toOpenStream = execWriter . outMF outOpenChunk

outMF :: OutChunk -> MidiFile.T -> MidiWriter ()
outMF outChk (MidiFile.C mft divisn trks) =

do
outChunk "MThd" ( do

out 2 ( fromEnum mft) -- format ( type 0, 1 or 2)
out 2 ( length trks) -- number of tracks to come
outputDivision divisn) -- time unit

mapM_ (outputTrack outChk) trks

outputDivision :: Division -> MidiWriter ()
outputDivision (Ticks nticks) = out 2 nticks
outputDivision (SMPTE mode nticks) = do

out 1 (256-mode)
out 1 nticks

outputTrack :: OutChunk -> Track -> MidiWriter ()
outputTrack outChk trk =

outChk "MTrk" ( mapM_ outputEvent (trk ++ [(0, MetaEvent EndOfTrack)]))

The following functions encode variousMidiFile.T elements into the raw data of a standard MIDI
file.

outputEvent :: MidiFile.Event -> MidiWriter ()
outputEvent (dt, e) =

do outVar dt
case e of

(MidiEvent ch mevent) -> outputMidiEvent ch mevent
(MetaEvent mevent) -> outputMetaEvent mevent
_ -> error ("don’t know, how to write a "++ show e++".")

outputMidiEvent :: MidiFile.Channel -> MidiEvent -> MidiWriter ()
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outputMidiEvent c e =
let outC = outChan c
in case e of

(NoteOff p v) -> outC 8 [p,v]
(NoteOn p v) -> outC 9 [p,v]
(PolyAfter p pr) -> outC 10 [p,pr]
(Control cn cv) -> outC 11 [cn,cv]
(ProgChange pn) -> outC 12 [pn]
(MonoAfter pr) -> outC 13 [pr]
(PitchBend pb) -> outC 14 [lo,hi] -- little - endian !!

where (hi,lo) = Bit. splitAt 8 pb

-- output a channel event
outChan :: MidiFile.Channel -> Int -> [ Int ] -> MidiWriter ()
outChan chan code bytes = do

out 1 (16*code+chan)
mapM_ (out 1) bytes

outMeta :: Int -> [ Int ] -> MidiWriter ()
outMeta code bytes = do

out 1 255
out 1 code
outVar ( length bytes)
outList bytes

outMetaStr :: Int -> String -> MidiWriter ()
outMetaStr code bytes = do

out 1 255
out 1 code
outVar ( length bytes)
outStr bytes

-- As with outChunk , there are other ways to do this - but
-- it ’ s not obvious which is best or if performance is a big issue .
outMetaMW :: Int -> MidiWriter a -> MidiWriter a
outMetaMW code m = do

out 1 255
out 1 code
outVar (mLength m)
m

outputMetaEvent :: MetaEvent -> MidiWriter ()
outputMetaEvent (SequenceNum num) = outMetaMW 0 (out 2 num)
outputMetaEvent (TextEvent s) = outMetaStr 1 s
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outputMetaEvent (Copyright s) = outMetaStr 2 s
outputMetaEvent (TrackName s) = outMetaStr 3 s
outputMetaEvent (InstrName s) = outMetaStr 4 s
outputMetaEvent (Lyric s) = outMetaStr 5 s
outputMetaEvent (Marker s) = outMetaStr 6 s
outputMetaEvent (CuePoint s) = outMetaStr 7 s
outputMetaEvent (MIDIPrefix c) = outMeta 32 [c]
outputMetaEvent EndOfTrack = outMeta 47 []

outputMetaEvent (SetTempo tp) = outMetaMW 81 (out 3 tp)
outputMetaEvent (SMPTEOffset hr mn se fr ff)

= outMeta 84 [hr,mn,se,fr,ff]
outputMetaEvent (TimeSig n d c b) = outMeta 88 [n,d,c,b]
outputMetaEvent (KeySig sf mi) = outMeta 89 [sf’, fromEnum mi]

where k = index (KeyCf,KeyCs) sf - 7
sf’ = if (k >= 0)

then k
else 255+k

outputMetaEvent (SequencerSpecific codes)
= outMeta 127 codes

outputMetaEvent (Unknown s) = outMetaStr 21 s

The midiwriter accumulates a String. For all the usual reasons, the String is represented by ShowS.

type MidiWriter a = Writer [ Char ] a

mLength :: MidiWriter a -> Int
mLength m = length (execWriter m)

out :: Int -> Int -> MidiWriter ()
out a x = tell ( map ( chr . fromIntegral ) (Bit.someBytes a x))

outStr :: String -> MidiWriter ()
outStr cs = tell cs

outList :: [ Int ] -> MidiWriter ()
outList xs = tell ( map chr xs)

Numbers of variable size are represented by sequences of 7-bit blocks tagged (in the top bit) with a bit
indicating: (1) that more data follows; or (0) that this is the last block.

outVar :: Int -> MidiWriter ()
outVar n = do

outVarAux leftover
out 1 data7

where (leftover, data7) = Bit. splitAt 7 n
outVarAux 0 = return ()
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outVarAux x = do
outVarAux leftover’
out 1 (128+data7’) -- make signal bit 1

where (leftover’,data7’) = Bit. splitAt 7 x

outTag :: String -> MidiWriter ()
outTag tag@(_:_:_:_:[]) = outStr tag
outTag tag =

error ("SaveMidi.outChunk: Chunk name " ++ tag ++
" does not consist of 4 characters.")

-- Note : here I ’ ve chosen to compute the track twice
-- rather than store it . Other options are worth exploring .

type OutChunk = String -> MidiWriter () -> MidiWriter ()

outChunk, outOpenChunk :: OutChunk

outChunk tag m =
do

outTag tag
out 4 (mLength m)
m

{- Does the MIDI standard allow chunks without a length specification ?
This is essential for infinite music and music that is created on the fly . -}

outOpenChunk tag m =
do

outTag tag
out 4 (-1)
m

6.1.5 Loading MIDI Files

The Haskore.Interface.MIDI.Load module loads and parses a MIDI File; it can convert it into a MidiFile
data type object or simply print out the contents of the file.

module Haskore.Interface.MIDI.Load (fromStream, fromFile, showFile)
where

import Haskore.Interface.MIDI.File
import qualified Haskore.Interface.MIDI.File as MidiFile

import IOExtensions (readBinaryFile)
import qualified Haskore.General.Bit as Bit
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import Data.Bits (testBit, (.|.))
import Data.Word (Word8, Word32)
import Data. Char ( ord )
import Data. Maybe ( fromJust , mapMaybe)
import Haskore.General.Utility (unlinesS, rightS, concatS)
import Control. Monad ( MonadPlus , mzero , mplus )

The main load function.

fromFile :: FilePath -> IO MidiFile.T
fromFile filename =

fmap fromStream (readBinaryFile filename)

fromStream :: String -> MidiFile.T
fromStream contents =

case runP parse (contents, (AtBeginning,0),-1) of
Just (mf,"",_,_) -> mf
Just (_ ,_ ,_,_) -> error "Garbage left over." -- return mf
Nothing -> error "Error reading midi file: unfamiliar format or file corrupt."

A MIDI file is made of “chunks”, each of which is either a “header chunk” or a “track chunk”. To be
correct, it must consist of one header chunk followed by any number of track chunks, but for robustness’s
sake we ignore any non-header chunks that come before a header chunk. The header tells us the number of
tracks to come, which is passed togetTracks .

parse :: MidiReader MidiFile.T
parse =

do
chunk <- getChunk
case chunk of

Header (format, nTracks, division) ->
do

chunks <- sequence ( replicate nTracks getChunk)
return (MidiFile.C format division ( map removeEndOfTrack

( mapMaybe trackFromChunk chunks)))
_ -> parse

Check if a chunk contains a track. Likeparse , if a chunk is not a track chunk, it is just ignored.

trackFromChunk :: Chunk -> Maybe Track
trackFromChunk (Track t) = Just t
trackFromChunk _ = Nothing

There are two ways to mark the end of the track: The end of the event list and the meta event
EndOfTrack . Thus the end marker is redundant and we remove aEndOfTrack at the end of the track
and complain about allEndOfTrack s within the event list.

removeEndOfTrack :: Track -> Track

52



removeEndOfTrack [] = error "Track does not end with EndOfTrack"
removeEndOfTrack ((_, MetaEvent EndOfTrack):[]) = []
removeEndOfTrack ((_, MetaEvent EndOfTrack):_) =

error "EndOfTrack inside a track"
removeEndOfTrack (e:es) = e : removeEndOfTrack es

Parse a chunk, whether a header chunk, a track chunk, or otherwise. A chunk consists of a four-byte
type code (a header is “MThd”; a track is “MTrk”), four bytes for the size of the coming data, and the data
itself.

getChunk :: MidiReader Chunk
getChunk = do

ty <- getN 4
size <- get4
setSize size
case ty of

"MThd" -> fmap Header getHeader
"MTrk" -> fmap Track getTrack
_ -> do

getN size -- g <- getN size
return AlienChunk

data Chunk = Header (MidiFile.Type, Int , Division)
| Track Track
| AlienChunk

deriving Eq

Parse a Header Chunk. A header consists of a format (0, 1, or 2), the number of track chunks to come,
and the smallest time division to be used in reading the rest of the file.

getHeader :: MidiReader (MidiFile.Type, Int , Division)
getHeader =

do
format <- get2
nTracks <- get2
division <- getDivision
return ( toEnum format, nTracks, division)

The division is implemented thus: the most significant bit is 0 if it’s in ticks per quarter note; 1 if it’s an
SMPTE value.

getDivision :: MidiReader Division
getDivision = do

x <- get1
y <- get1
if x < 128

then return (Ticks (x*256+y))
else return (SMPTE (256-x) y)
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A track is a series of events. Parse a track, stopping when the size is zero.

getTrack :: MidiReader [MidiFile.Event]
getTrack =

do
size <- readSize
case size of

0 -> return []
_ -> do

e <- getFancyEvent
es <- getTrack
return (e:es)

Each event is preceded by the delta time: the time in ticks between the last event and the current event.
Parse a time and an event, ignoring System Exclusive messages.

getFancyEvent :: MidiReader MidiFile.Event
getFancyEvent =

do
time <- getVar
e <- getEvent
return (time, e)

Parse an event. Note that in the case of a regular Midi Event, the tag is the status, and we read the first
byte of data before we callmidiEvent . In the case of a MidiEvent with running status, we find out the
status from the parser (it’s been nice enough to keep track of it for us), and the tag that we’ve already gotten
is the first byte of data.

getEvent :: MidiReader MidiFile.Event’
getEvent =

do
tag <- get1
case tag of

240 -> do
size <- getVar

contents <- getN size
return (SysExStart contents)

247 -> do
size <- getVar

contents <- getN size
return (SysExCont contents)

255 -> do
code <- get1

size <- getVar
e <- getMetaEvent code size

return (MetaEvent e)
x | x>127 -> do
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firstData <- get1
getMidiEvent (decodeStatus tag) firstData

_ -> do -- running status
s <- readME
getMidiEvent s tag

Simpler version ofgetFancyTrack , used in the Show functions.

getPlainTrack :: MidiReader [MidiFile.Event]
getPlainTrack = oneOrMore getFancyEvent

data WhichMidiEvent = AtBeginning
| ItsaNoteOff
| ItsaNoteOn
| ItsaPolyAfter
| ItsaControl
| ItsaProgChange
| ItsaMonoAfter
| ItsaPitchBend

deriving Show
type Status = (WhichMidiEvent, Int )

Find out the status (MidiEvent type and channel) given a byte of data.

decodeStatus :: Int -> Status
decodeStatus tag = (w, channel)

where w = case code of
08 -> ItsaNoteOff
09 -> ItsaNoteOn
10 -> ItsaPolyAfter
11 -> ItsaControl
12 -> ItsaProgChange
13 -> ItsaMonoAfter
14 -> ItsaPitchBend
_ -> error "invalid MidiEvent code"

(code, channel) = Bit. splitAt 4 tag

Parse a MIDI Event. Note that since getting the first byte is a little complex (there are issues with running
status), it has already been handled for us byevent .

getMidiEvent :: Status -> Int -> MidiReader MidiFile.Event’
getMidiEvent s@(wME, channel) firstData =

let getME =
case wME of

ItsaNoteOff -> fmap (NoteOff firstData) get1
ItsaNoteOn -> fmap (NoteOn firstData) get1

{-
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ItsaNoteOn -> do v <- get1
case v of

0 -> return ( NoteOff firstData 0)
_ -> return ( NoteOn firstData v)

-}
ItsaPolyAfter -> fmap (PolyAfter firstData) get1
ItsaControl -> fmap (Control firstData) get1
ItsaPitchBend -> fmap (\msb -> PitchBend (firstData+256*msb)) get1
ItsaProgChange -> return (ProgChange firstData)
ItsaMonoAfter -> return (MonoAfter firstData)
AtBeginning -> error "AtBeginning"

in do setME s
fmap (MidiEvent channel) getME

Parse a MetaEvent.

getMetaEvent :: Int -> Int -> MidiReader MetaEvent
getMetaEvent code size =

case code of
000 -> fmap SequenceNum (get2)
001 -> fmap TextEvent (getN size)
002 -> fmap Copyright (getN size)
003 -> fmap TrackName (getN size)
004 -> fmap InstrName (getN size)
005 -> fmap Lyric (getN size)
006 -> fmap Marker (getN size)
007 -> fmap CuePoint (getN size)

032 -> fmap MIDIPrefix get1
047 -> return EndOfTrack
081 -> fmap SetTempo get3

084 -> do {hrs <- get1 ; mins <- get1 ; secs <- get1;
frames <- get1 ; bits <- get1 ;
return (SMPTEOffset hrs mins secs frames bits)}

088 -> do
n <- get1
d <- get1
c <- get1
b <- get1
return (TimeSig n d c b)

089 -> do
sf <- get1
mi <- get1
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return (KeySig (toKeyName sf) ( toEnum mi))

127 -> fmap (SequencerSpecific . map fromEnum) (getN size)

_ -> fmap Unknown (getN size)

toKeyName :: Int -> Key
toKeyName sf = toEnum ((sf+7) ‘ mod‘ 15)

getCh gets a single character (a byte) from the input.

getCh :: MidiReader Char
getCh = do {sub1Size; tokenP myHead}

where myHead ([] ,_ ,_ ) = Nothing
myHead ((c:cs),st,sz) = Just (c,cs,st,sz)

getN n returns n characters (bytes) from the input.

getN :: Int -> MidiReader String
getN 0 = return []
getN n = do

a <- getCh
b <- getN (n-1)
return (a:b)

get1 , get2 , get3 , andget4 take 1-, 2-, 3-, or 4-byte numbers from the input (respectively), convert
the base-256 data into a single number, and return.

getByte :: MidiReader Word8
getByte = fmap fromIntegral get1

get1 :: MidiReader Int
get1 = fmap ord getCh

get2 :: MidiReader Int
get2 = do

x1 <- get1
x2 <- get1
return (Bit.fromBytes [x1,x2])

get3 :: MidiReader Int
get3 = do

x1 <- get1
x2 <- get1
x3 <- get1
return (Bit.fromBytes [x1,x2,x3])
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get4 :: MidiReader Int
get4 = do

x1 <- get1
x2 <- get1
x3 <- get1
x4 <- get1
return (Bit.fromBytes [x1,x2,x3,x4])

Variable-length quantitiesare used often in MIDI notation. They are represented in the following way.
Each byte (containing 8 bits) uses the 7 least significant bits to store information. The most significant bit
is used to signal whether or not more information is coming. If it’s 1, another byte is coming. If it’s 0, that
byte is the last one.getVar gets a variable-length quantity from the input.

getVar :: MidiReader Int
getVar =

let getVarAux n =
do

digit <- getByte
let digitExt = fromIntegral digit :: Word32

in if flip testBit 7 digit -- if it ’ s the last byte
then getVarAux (Bit.shiftL 7 n .|. Bit.trunc 7 digitExt)
else return ( fromIntegral (Bit.shiftL 7 n .|. digitExt))

in getVarAux 0

Functions to show the decoded contents of a Midi file in an easy-to-read format.

showFile :: String -> IO ()
showFile file = readBinaryFile file >>= ( putStr . showChunks)

showChunks :: String -> String
showChunks mf = showMR getChunks (unlinesS . map pp) (mf, (AtBeginning,0),-1) ""

where
pp :: ( String , String , Status, Int ) -> ShowS
pp ("MThd",contents,st,sz) =

showString "Header: " .
showMR getHeader shows (contents,st,sz)

pp ("MTrk",contents,st,sz) =
showString "Track:\n" .
showMR getPlainTrack (unlinesS . map showTrackEvent) (contents,st,sz)

pp (ty,contents,_,_) =
showString "Chunk: " .
showString ty .
showString " " .
shows ( map fromEnum contents) .
showString "\n"

showTrackEvent :: MidiFile.Event -> ShowS
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showTrackEvent (t,e) =
rightS 10 ( shows t) . showString " : " . showEvent e

showEvent :: MidiFile.Event’ -> ShowS
showEvent (MidiEvent ch e) =

showString "MidiEvent " . shows ch . showString " " . shows e
showEvent (MetaEvent e) =

showString "MetaEvent " . shows e
showEvent (SysExStart s) =

showString "SysExStart " . concatS ( map ( shows . fromEnum ) s)
showEvent (SysExCont s) =

showString "SysExCont " . concatS ( map ( shows . fromEnum ) s)

showMR :: MidiReader a -> (a-> ShowS) -> ( String , Status, Int ) -> ShowS
showMR m pp (s,st,sz) =

case runP m (s,st,sz) of
Nothing -> showString "Parse failed: " . shows ( map fromEnum s)
Just (a,[] ,_,_) -> pp a
Just (a,junk,_,_) -> pp a . showString "Junk: " . shows ( map fromEnum junk)

These two functions, theplainChunk andgetChunks parsers, do not combine directly into a single
master parser. Rather, they should be used to chop parts of a midi file up into chunks of bytes which can be
outputted separately.

Chop a Midi file into chunks returning:

• list of “chunk-type”-contents-running status triples; and

• leftover slop (should be empty in correctly formatted file)

getChunks :: MidiReader [( String , String , Status, Int )]
getChunks = zeroOrMore getPlainChunk

getPlainChunk :: MidiReader ( String , String , Status, Int )
getPlainChunk =

do
ty <- getN 4 -- chunk type : header or track

size <- get4 -- size of what ’ s next
contents <- getN size -- what ’ s next
status <- readME -- running status
return (ty, contents, status, -1) -- Don’ t worry about size

The following parser monad parses a Midi File. As it parses, it keeps track of these things:

• (w,c) a.k.a.st Running status. In MIDI, a shortcut is used for long strings of similar MIDI events:
if a stream of consecutive events all have the same type and channel, the type and channel can be
ommitted for all but the first event. To implement this “feature”, the parser must keep track of the type
and channel of the most recent Midi Event.
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• sz The size, in bytes, of what’s left to parse, so that it knows when it’s done.

type MidiReader a = Parser String WhichMidiEvent Int Int a

data Parser s w c sz a = P ((s,(w,c),sz) -> Maybe (a,s,(w,c),sz))

unP :: Parser s w c sz a -> ((s,(w,c),sz) -> Maybe (a,s,(w,c),sz))
unP (P a) = a

-- Access to state
tokenP :: ((s,(w,c),sz) -> Maybe (a,s,(w,c),sz)) -> Parser s w c sz a
runP :: Parser s w c sz a -> (s,(w,c),sz) -> Maybe (a,s,(w,c),sz)

tokenP get = P $ get
runP m (s,st,sz) = (unP m) (s,st,sz)

instance Monad (Parser s w c sz) where
m >>= k = P $ \ (s,st,sz) -> do

(a,s’,st’,sz’) <- unP m (s,st,sz)
unP (k a) (s’,st’,sz’)

m >> k = P $ \ (s,st,sz) -> do
(_,s’,st’,sz’) <- unP m (s,st,sz)
unP k (s’,st’,sz’)

return a = P $ \ (s,st,sz) -> return (a,s,st,sz)

instance Functor (Parser s w c sz) where
fmap f m = P $ \ (s,st,sz) -> do (a,s’,st’,sz’) <- unP m (s,st,sz)

return (f a,s’,st’,sz’)
-- fmap f m = do { a <- m; return ( f a)}
-- fmap f m = m >>= (\ a -> return ( f a))

setME :: Status -> MidiReader ()
setME st’ = P $ \ (s,_,sz) -> return ((),s,st’,sz)

readME :: MidiReader Status
readME = P $ \ (s,st,sz) -> return (st,s,st,sz)

setSize :: Int -> MidiReader ()
setSize sz’ = P $ \ (s,st,_) -> return ((),s,st,sz’)

sub1Size :: MidiReader ()
sub1Size = P $ \ (s,st,sz) -> return ((),s,st,(sz-1))

readSize :: MidiReader Int
readSize = P $ \ (s,st,sz) -> return (sz,s,st,sz)
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-- instance MonadZero ( Parser s w c sz ) where

instance MonadPlus (Parser s w c sz) where
mzero = P $ \ _ -> mzero
p ‘ mplus ‘ q = P $ \ (s,st,sz) -> unP p (s,st,sz) ‘ mplus ‘ unP q (s,st,sz)

-- Wadler ’ s force function
force :: Parser s w c sz a -> Parser s w c sz a
force (P p) = P $ \ (s,st,sz) -> let x = p (s,st,sz)

in Just ( fromJust x)

zeroOrMore :: Parser s w c sz a -> Parser s w c sz [a]
zeroOrMore p = force (oneOrMore p ‘ mplus ‘ return [])

oneOrMore :: Parser s w c sz a -> Parser s w c sz [a]
oneOrMore p = do {x <- p; xs <- zeroOrMore p; return (x:xs)}

6.1.6 Reading Midi files

Now that we have translated a raw Midi file into aMidiFile.T data type, we can translate that
MidiFile.T into aMusic.T object.

module Haskore.Interface.MIDI. Read (toMusic,
{- debugging -} retrieveTracks)

where

import Data. Ratio ((%))
import Data.FiniteMap (FiniteMap, listToFM, fmToList, addToFM,

lookupWithDefaultFM)
import Data. List ( groupBy )
import Data. Maybe ( mapMaybe)

import Haskore.Music
(note, rest, line, chord, (+:+), (=:=),

changeTempo, setInstrument,
Dur, DurRatio, NoteAttribute)

import Haskore.Interface.MIDI.File

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import qualified Haskore.Music.Player as Player
import qualified Haskore.Music.PerformanceContext as Context
import qualified Haskore.Process.Optimization as Optimization
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import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.Interface.MIDI.General as GeneralMidi
import qualified Haskore.Interface.MIDI.UserPatchMap as UserPatchMap

The main function. Note that we output aUserPatchMap.T and aContext.T as well as a
Music.T object.

toMusic :: MidiFile.T -> (UserPatchMap.T, Context.T, Music.T)
toMusic mf@(MidiFile.C _ d trks) =

let upm = makeUPM trks
upm’ = map (\(ch, progNum) ->

(GeneralMidi.numberToIName ch progNum, (ch, progNum)))
(fmToList upm)

m = format (readFullTrack d upm) mf
context = Context.setPlayer Player.fancy $

Context.setDur 1 $
Context.deflt

in (upm’, context, m)

retrieveTracks :: MidiFile.T -> [[Music.T]]
retrieveTracks (MidiFile.C _ d trks) =

let upm = makeUPM trks
m = map ( map (readTrack (tDiv d) upm . fst ) . map (getRest defltST)

. splitBy isTempoChg . mergeNotes defltST . moveTempoToHead) trks
in m

type UserPatchMap = FiniteMap MidiFile.Channel MidiFile.Program

readFullTrack :: Division -> UserPatchMap -> Track -> Music.T
readFullTrack dv upm trk =

let trksrs = map (getRest defltST)
(splitBy isTempoChg (mergeNotes defltST

(moveTempoToHead trk)))
readTempoTrack (t,r) =

changeTempo r (readTrack (tDiv dv) upm t)
in Optimization. all $ line $ map readTempoTrack trksrs

Make one big music out of the individual tracks of a MidiFile, using different composition types de-
pending on the format of the MidiFile.

format :: (Track -> Music.T) -> MidiFile.T -> Music.T
format tm (MidiFile.C MidiFile.Mixed _ [trk]) = tm trk
format _ (MidiFile.C MidiFile.Mixed _ _)

= error ("toMusic: Only one track allowed for MIDI file type 0.")
format tm (MidiFile.C MidiFile.Parallel _ trks) = chord ( map tm trks)
format tm (MidiFile.C MidiFile.Serial _ trks) = line ( map tm trks)

62



Look for Program Changes in the given tracks, in order to make aUserPatchMap .

makeUPM :: [Track] -> UserPatchMap
makeUPM trks =

let getPC (MidiEvent ch (ProgChange num)) = Just (ch, num)
getPC _ = Nothing

in listToFM $ concatMap ( mapMaybe (getPC . snd )) trks

TranslateDivisions into the number of ticks per quarter note.

tDiv :: Division -> Int
tDiv (Ticks x) = x
tDiv (SMPTE _ _) = error "Sorry, SMPTE not yet implemented."

moveTempoToHead gets the information that occurs at the beginning of the piece: the default tempo
and the default key signature. ASetTempo in the middle of the piece should translate to a tempo change
(Tempo r m), but aSetTempo at time 0 should set the default tempo for the entire piece, by translating
to Context.T tempo. It remains a matter of taste which tempo of several parallel tracks to use for the
whole music.moveTempoToHead takes care of all events that occur at time 0 so that if anySetTempo
appears at time 0, it is moved to the front of the list, so that it can be easily retrieved from the result of
splitBy isTempoChg .

moveTempoToHead :: Track -> Track
moveTempoToHead es@((0, MetaEvent (SetTempo _)):_) = es
moveTempoToHead es@((0, _):_) = skipStartEvent es
moveTempoToHead es = (0, MetaEvent (SetTempo defltST)) : es

skipStartEvent :: Track -> Track
skipStartEvent (e:es) =

let (tempo:es’) = moveTempoToHead es in (tempo : e : es’)
skipStartEvent [] =

error "skipStartEvent: Lists returned by moveTempoToHead must contain at least one SetTempo event."

Manages the tempo changes in the piece. It translates each MidiFileSetTempo into a ratio between
the new tempo and the tempo at the beginning.

getRest :: Int -> [RichEvent] -> ([RichEvent], DurRatio)
getRest d ((_, Event (MetaEvent (SetTempo tempo))) : es) =

(es, toInteger d % toInteger tempo)
getRest _ trk = (trk, 1)

splitBy takes a boolean test and a list; it divides up the list and turns it into alist of sub-lists; each
sub-list consists of (1) one element for which the test is true (or the first element in the list), and (2) all
elements after that element for which the test is false. Used to split a track into sub-tracks by tempo. For ex-
ample,splitBy (>10) [27, 0, 2, 1, 15, 3, 42, 4] yields[ [27,0,2,1], [15,3],
[42,4] ] .

splitBy :: (a -> Bool ) -> [a] -> [[a]]
splitBy p = groupBy (\_ x -> not (p x))
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isTempoChg :: RichEvent -> Bool
isTempoChg (_, Event (MetaEvent (SetTempo _))) = True
isTempoChg _ = False

readTrack is the heart of thetoMusic operation. It reads a track that has been processed by
mergeNotes , and returns the track asMusic.T . A RichEvent consists either of a normalMidiEvent
or of a note, which in contrast to normalMidiEvent s contains the information of correspondingNoteOn
andNoteOff events.

The functionreadTrack could also directly map the stream of note events to a big parallel composition
where each channel consists of one note. (The normal form as described in Hudak’s Temporal Media paper.)
But we try to avoid obviously unnecessary parallelism by watching for non-overlapping notes. Nevertheless
the structure of data returned byreadTrack is not very nice.

type RichEvent = (ElapsedTime, RichEvent’)
data RichEvent’ =

Event MidiFile.Event’
| Note ElapsedTime (Velocity,Velocity) Channel Pitch

readTrack :: Int -> UserPatchMap -> [RichEvent] -> Music.T
readTrack _ _ [] = rest 0
readTrack ticks upm ((t0, re0) : es0) =

let readTrack’ = readTrack ticks upm
body =

case re0 of
Note d (v,_) ch mp ->

let p = Pitch. fromInt (mp - MidiFile.zeroKey)
plainNote = note p (fromTicks ticks d) (makeVel v)
n = if d>=0

then setInstrument (lookupUPM upm ch) plainNote
else error "readTrack: note of negative duration"

in case es0 of
((t1, re1) : es1) ->

if t1 >= d
then n +:+ readTrack’ ((t1-d, re1) : es1)
else n =:= readTrack’ es0

[] -> n
Event (MidiEvent ch (ProgChange num)) ->

readTrack ticks (progChange ch num upm) es0
_ ->

readTrack’ es0
in if t0 < 0

then error "readTrack: NoteOn events out of order"
else if t0 > 0

then rest (fromTicks ticks t0) +:+ body
else body
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Take the division in ticks and a duration value and converts that to a common note duration (such as
quarter note, eighth note, etc.).

fromTicks :: Int -> Int -> Dur
fromTicks ticks d = toInteger d % toInteger (ticks * defltDurT)

Look up an instrument name from aUserPatchMap.T given its channel number.

lookupUPM :: UserPatchMap -> Int -> String
lookupUPM upm ch =

GeneralMidi.numberToIName ch
(lookupWithDefaultFM upm

( error "Invalid channel in user patch map") ch)

Implement aProgram Change: a change in theUserPatchMap.T in which a channel changes from
one instrument to another.

progChange :: MidiFile.Channel -> MidiFile.Program ->
UserPatchMap -> UserPatchMap

progChange ch num upm = addToFM upm ch num

Load the velocity. This shouldn’t be mixed up with the volume. The volume which is controlled by the
MIDI Volume controller simply scales the signal whereas the velocity is an instrument specific value that
corresponds to the intensity with which the instrument is played.

makeVel :: Int -> [NoteAttribute]
makeVel x = [Music.Velocity ( fromIntegral x / 64)]

ThemergeNotes function changes the order of the events in a track so that they can be handled by
readTrack: eachNoteOff is put directly after its correspondingNoteOn . Its first and second arguments
are the elapsed time and value (in microseconds per quarter note) of theSetTempo currently in effect.

mergeNotes :: Int -> Track -> [RichEvent]
mergeNotes dur = mergeNotes’ 0 dur

where
mergeNotes’ :: Int -> Int -> Track -> [RichEvent]
mergeNotes’ _ _ [] = []
mergeNotes’ _ _ ((newStt, e@(MetaEvent (SetTempo newStv))):es) =

(newStt, Event e) : mergeNotes’ newStt newStv es
mergeNotes’ _ _ ((_, MidiEvent _ (NoteOff _ _)) : _) =

error "NoteOff before NoteOn"
mergeNotes’ stt stv ((t, MidiEvent c (NoteOn p v)) : es) =

let (e, leftover) = searchNoteOff 0 stv 1 c p v es
in (t, e) : mergeNotes’ stt stv leftover

mergeNotes’ stt stv ((et,e):es) =
(et, Event e) : mergeNotes’ stt stv es

The functionsearchNoteOff takes a track and looks through the list of events to find theNoteOff
corresponding to the givenNoteOn . A NoteOff corresponds to an earlierNoteOn if it is the first in the
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track to have the same channel and pitch. If betweenNoteOn andNoteOff areSetTempo events, it
calculates what the elapsed-time is, expressed in the current tempo. This function takes a ridiculous number
of arguments, I know, but I don’t think it can do without any of the information. Maybe there is a simpler
way.

searchNoteOff ::
Double -> {- time interval between NoteOn and now,

in terms of the tempo at the NoteOn -}
Int -> Double -> {- SetTempo values : the one at the NoteOn and

the ratio between the current tempo and the first one . -}
Channel -> Pitch -> Velocity ->

-- channel and pitch of NoteOn ( NoteOff must match )
Track -> -- the remainder of the track to be searched
(RichEvent’, Track) -- the needed event and the remainder of the track

searchNoteOff int _ str c0 p0 v0 ((t1, MidiEvent c1 (NoteOff p1 v1)) : es)
| c0 == c1 && p0 == p1 =

let d = round (addInterval str t1 int)
es’ = case es of

((t2, me) : ess) -> (t1+t2, me) : ess
[] -> []

in (Note d (v0,v1) c0 p0, es’)
searchNoteOff int ost str c p v (e@(t1, MetaEvent (SetTempo nst)) : es) =

let (e’, es’) = searchNoteOff (addInterval str t1 int) ost
( fromIntegral ost / fromIntegral nst) c p v es

in (e’, e : es’)
searchNoteOff int ost str c p v (e:es) =

let (e’, es’) = searchNoteOff (addInterval str ( fst e) int) ost str c p v es
in (e’, e : es’)

searchNoteOff _ _ _ _ _ _ [] =
error "ReadMidi.searchNoteOff: no corresponding NoteOff"

addInterval :: Double -> Int -> Double -> Double
addInterval str t int = (int + fromIntegral t * str)

6.1.7 General Midi

module Haskore.Interface.MIDI.General where

import qualified Data. List as List
import Data. Array
import qualified Haskore.Interface.MIDI.File as MidiFile

type Name = String
type Table = [(Name, MidiFile.Program)]
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numberToName :: MidiFile.Program -> Name
numberToName =

( array (0,127)
( List . map (\(x,y)->(y,x)) Haskore.Interface.MIDI.General. map) !)

numberToIName ::
MidiFile.Channel -> MidiFile.Program -> Name

numberToIName ch num =
if ch == 9 then "drums" else numberToName num

map :: Table
map = [

("Acoustic Grand Piano",0), ("Bright Acoustic Piano",1),
("Electric Grand Piano",2), ("Honky Tonk Piano",3),
("Rhodes Piano",4), ("Chorused Piano",5),
("Harpsichord",6), ("Clavinet",7),
("Celesta",8), ("Glockenspiel",9),
("Music Box",10), ("Vibraphone",11),
("Marimba",12), ("Xylophone",13),
("Tubular Bells",14), ("Dulcimer",15),
("Hammond Organ",16), ("Percussive Organ",17),
("Rock Organ",18), ("Church Organ",19),
("Reed Organ",20), ("Accordion",21),
("Harmonica",22), ("Tango Accordion",23),
("Acoustic Guitar (nylon)",24), ("Acoustic Guitar (steel)",25),
("Electric Guitar (jazz)",26), ("Electric Guitar (clean)",27),
("Electric Guitar (muted)",28), ("Overdriven Guitar",29),
("Distortion Guitar",30), ("Guitar Harmonics",31),
("Acoustic Bass",32), ("Electric Bass (fingered)",33),
("Electric Bass (picked)",34), ("Fretless Bass",35),
("Slap Bass 1",36), ("Slap Bass 2",37),
("Synth Bass 1",38), ("Synth Bass 2",39),
("Violin",40), ("Viola",41),
("Cello",42), ("Contrabass",43),
("Tremolo Strings",44), ("Pizzicato Strings",45),
("Orchestral Harp",46), ("Timpani",47),
("String Ensemble 1",48), ("String Ensemble 2",49),
("Synth Strings 1",50), ("Synth Strings 2",51),
("Choir Aahs",52), ("Voice Oohs",53),
("Synth Voice",54), ("Orchestra Hit",55),
("Trumpet",56), ("Trombone",57),
("Tuba",58), ("Muted Trumpet",59),
("French Horn",60), ("Brass Section",61),
("Synth Brass 1",62), ("Synth Brass 2",63),
("Soprano Sax",64), ("Alto Sax",65),
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("Tenor Sax",66), ("Baritone Sax",67),
("Oboe",68), ("Bassoon",69),
("English Horn",70), ("Clarinet",71),
("Piccolo",72), ("Flute",73),
("Recorder",74), ("Pan Flute",75),
("Blown Bottle",76), ("Shakuhachi",77),
("Whistle",78), ("Ocarina",79),
("Lead 1 (square)",80), ("Lead 2 (sawtooth)",81),
("Lead 3 (calliope)",82), ("Lead 4 (chiff)",83),
("Lead 5 (charang)",84), ("Lead 6 (voice)",85),
("Lead 7 (fifths)",86), ("Lead 8 (bass+lead)",87),
("Pad 1 (new age)",88), ("Pad 2 (warm)",89),
("Pad 3 (polysynth)",90), ("Pad 4 (choir)",91),
("Pad 5 (bowed)",92), ("Pad 6 (metallic)",93),
("Pad 7 (halo)",94), ("Pad 8 (sweep)",95),
("FX1 (train)",96), ("FX2 (soundtrack)",97),
("FX3 (crystal)",98), ("FX4 (atmosphere)",99),
("FX5 (brightness)",100), ("FX6 (goblins)",101),
("FX7 (echoes)",102), ("FX8 (sci-fi)",103),
("Sitar",104), ("Banjo",105),
("Shamisen",106), ("Koto",107),
("Kalimba",108), ("Bagpipe",109),
("Fiddle",110), ("Shanai",111),
("Tinkle Bell",112), ("Agogo",113),
("Steel Drums",114), ("Woodblock",115),
("Taiko Drum",116), ("Melodic Drum",117),
("Synth Drum",118), ("Reverse Cymbal",119),
("Guitar Fret Noise",120), ("Breath Noise",121),
("Seashore",122), ("Bird Tweet",123),
("Telephone Ring",124), ("Helicopter",125),
("Applause",126), ("Gunshot",127)]

6.2 CSound

module Haskore.Interface.CSound where

[Note: if this module is loaded into Hugs98, the following error message may result:

ERROR "CSound.lhs" (line 707):
*** Cannot derive Eq OrcExp after 40 iterations.
*** This may indicate that the problem is undecidable. However,
*** you may still try to increase the cutoff limit using the -c
*** option and then try again. (The current setting is -c40)

This is apparently due to the size of theOrcExp data type. For correct operation, start Hugs with a larger
cutoff limit, such as-c1000 .]

68



CSound is a software synthesizer that allows its user to create a virtually unlimited number of sounds and
instruments. It is extremely portable because it is written entirely in C. Its strength lies mainly in the fact that
all computations are performed in software, so it is not reliant on sophisticated musical hardware. The output
of a CSound computation is a file representing the signal which can be played by an independent application,
so there is no hard upper limit on computation time. This is important because many sophisticated signals
take much longer to compute than to play. The purpose of this module is to create an interface between
Haskore and CSound in order to give the Haskore user access to all the powerful features of a software
sound synthesizer.

CSound takes as input two plain text files: ascore(.sco) file and anorchestra(.orc) file. The score
file is similar to a Midi file, and the orchestra file defines one or moreinstrumentsthat are referenced from
the score file (the orchestra file can thus be thought of as the software equivalent of Midi hardware). The
CSound program takes these two files as input, and produces asound fileas output, usually in.wav format.
Sound files are generally much larger than Midi files, since they describe the actual sound to be generated,
represented as a sequence of values (typically 44,100 of them for each second of music), which are converted
directly into voltages that drive the audio speakers. Sound files can be played by any standard media player
found on conventional PC’s.

Each of these files is described in detail in the following sections.

Here are some common definitions:

type Inst = Int
type Name = String

6.2.1 The Score File

module Haskore.Interface.CSound.Score where

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music
import qualified Haskore.Music.Performance as Performance
import qualified Haskore.Music.Player as Player
import System . IO
import Data. List ( find )
import Haskore.General.Utility (flattenTuples2, flattenTuples3, flattenTuples4)
import Haskore.Interface.CSound (Name, Inst)

We will represent a score file as a sequence ofscore statements:

type T = [Statement]

TheStatement data type is designed to simulate CSound’s three kinds of score statements:

1. A tempostatement, which sets the tempo. In the absence of a tempo statement, the tempo defaults to
60 beats per minute.

2. A note event, which defines the start time, pitch, duration (in beats), volume (in decibels), and in-
strument to play a note (and is thus more like a HaskoreEvent than a Midi event, thus making the
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conversion to CSound easier than to Midi, as we shall see later). Each note event also contains a num-
ber of optional arguments calledp-fields, which determine other properties of the note, and whose
interpretation depends on the instrument that plays the note. This will be discussed further in a later
section.

3. Function tabledefinitions. A function table is used by instruments to produce audio signals. For
example, sequencing through a table containing a perfect sine wave will produce a very pure tone,
while a table containing an elaborate polynomial will produce a complex sound with many overtones.
The tables can also be used to produce control signals that modify other signals. Perhaps the simplest
example of this is a tremolo or vibrato effect, but more complex sound effects, and FM (frequency
modulation) synthesis in general, is possible.

data Statement = Tempo Bpm
| Note Inst StartTime Duration Pch Volume [Pfield]
| Table Table CreatTime TableSize Normalize GenRoutine

deriving Show

type Bpm = Int
type StartTime = Float
type Duration = Float
data Pch = AbsPch Pitch.Absolute | Cps Float deriving Show
type Volume = Float
type Pfield = Float
type Table = Int
type CreatTime = Float
type TableSize = Int
type Normalize = Bool

This is all rather straightforward, except for function table generation, which requires further explana-
tion.

Function Tables Each function table must have a unique integer ID (Table ), creation time (usually
0), size (which must be a power of 2), and aNormalize flag. Most tables in CSound are normalized,
i.e. rescaled to a maximum absolute value of 1. The normalization process can be skipped by setting the
Normalize flag toFalse . Such a table may be desirable to generate a control or modifying signal, but
is not very useful for audio signal generation.

Tables are simply arrays of floating point values. The values stored in the table are calculated by one of
CSound’s predefinedgenerating routines, represented by the typeGenRoutine :

data GenRoutine = GenRoutine GenNum [GenArg]
| SoundFile SFName SkipTime ChanNum

deriving Show

type SFName = String
type SkipTime = Float
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type ChanNum = Float
type GenNum = Int
type GenArg = Float

GenRoutine n args refers to CSound’s generating routinen (an integer), called with floating point
argumentsargs . There is only one generating routine (calledGEN01) in CSound that takes an argument
type other than floating point, and thus we represent this using the special constructorSoundFile , whose
functionality will be described shortly.

Knowing which of CSound’s generating routines to use and with what arguments can be a daunting
task. The newest version of CSound (version 4.01) provides 23 different generating routines, and each one
of them assigns special meanings to its arguments. To avoid having to reference routines using integer ids,
the following functions are defined for the most often-used generating routines. A brief discussion of each
routine is also included. For a full description of these and other routines, refer to the CSound manual or
consult the following webpage:http://www.leeds.ac.uk/music/Man/Csound/Function/
GENS.html . The user familiar with CSound is free to write helper functions like the ones below to capture
other generating routines.

GEN01. Transfers data from a soundfile into a function table. Recall that the size of the function table
in CSound must be a power of two. If the soundfile is larger than the table size, reading stops when the table
is full; if it is smaller, then the table is padded with zeros. One exception is allowed: if the file is of type
AIFF and the table size is set to zero, the size of the function table is allocated dynamically as the number
of points in the soundfile. The table is then unusable by normal oscillators, but can be used by a special
SampOscconstructor (discussed in Section6.2.2). The first argument passed to theGEN01subroutine is
a string containing the name of the source file. The second argument is skip time, which is the number
of seconds into the file that the reading begins. Finally there is an argument for the channel number, with
0 meaning read all channels.GEN01 is represented in Haskore asSoundFile SFName SkipTime
ChanNum, as discussed earlier. To make the use ofSoundFile consistent with the use of other functions
to be described shortly, we define a simple equivalent:

soundFile :: SFName -> SkipTime -> ChanNum -> GenRoutine
soundFile = SoundFile

GEN02. Transfers data from its argument fields directly into the function table. We represent its
functionality as follows:

tableValues :: [GenArg] -> GenRoutine
tableValues gas = GenRoutine 2 gas

GEN03. Fills the table by evaluating a polynomial over a specified interval and with given coefficients.
For example, callingGEN03with an interval of(−1, 1) and coefficients 5, 4, 3, 2, 0, 1 will generate values
of the function5 + 4x + 3x2 + 2x3 + x5 over the interval−1 to 1. The number of values generated is equal
to the size of the table. Let’s express this by the following function:
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polynomial :: Interval -> Coefficients -> GenRoutine
polynomial (x1,x2) cfs = GenRoutine 3 (x1:x2:cfs)

type Interval = ( Float , Float )
type Coefficients = [ Float ]

GEN05. Constructs a table from segments of exponential curves. The first argument is the starting
point. The meaning of the subsequent arguments alternates between the length of a segment in samples, and
the endpoint of the segment. The endpoint of one segment is the starting point of the next. The sum of all
the segment lengths normally equals the size of the table: if it is less the table is padded with zeros, if it is
more, only the firstTableSize locations will be stored in the table.

exponential1 :: StartPt -> [(SegLength, EndPt)] -> GenRoutine
exponential1 sp xs = GenRoutine 5 (sp : flattenTuples2 xs)

type StartPt = Float
type SegLength = Float
type EndPt = Float

GEN25. Similar to GEN05in that it produces segments of exponential curves, but instead of repre-
senting the lengths of segments and their endpoints, its arguments represent(x, y) coordinates in the table,
and the subroutine produces curves between successive locations. Thex-coordinates must be in increasing
order.

exponential2 :: [Point] -> GenRoutine
exponential2 pts = GenRoutine 25 (flattenTuples2 pts)

type Point = ( Float , Float )

GEN06. Generates a table from segments of cubic polynomial functions, spanning three points at a
time. We define a functioncubic with two arguments: a starting position and a list of segment length (in
number of samples) and segment endpoint pairs. The endpoint of one segment is the starting point of the
next. The meaning of the segment endpoint alternates between a local minimum/maximum and point of
inflexion. Whether a point is a maximum or a minimum is determined by its relation to the next point of
inflexion. Also note that for two successive minima or maxima, the inflexion points will be jagged, whereas
for alternating maxima and minima, they will be smooth. The slope of the two segments is independent
at the point of inflection and will likely vary. The starting point is a local minimum or maximum (if the
following point is greater than the starting point, then the starting point is a minimum, otherwise it is a
maximum). The first pair of numbers will in essence indicate the position of the first inflexion point in
(x, y) coordinates. The folowing pair will determine the next local minimum/maximum, followed by the
second point of inflexion, etc.

cubic :: StartPt -> [(SegLength, EndPt)] -> GenRoutine
cubic sp pts = GenRoutine 6 (sp : flattenTuples2 pts)
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GEN07. Similar to GEN05, except that it generates straight lines instead of exponential curve seg-
ments. All other issues discussed aboutGEN05also apply toGEN07. We represent it as:

lineSeg1 :: StartPt -> [(SegLength, EndPt)] -> GenRoutine
lineSeg1 sp pts = GenRoutine 7 (sp : flattenTuples2 pts)

GEN27. As with GEN05andGEN25, produces straight line segments between points whose locations
are given as(x, y) coordinates, rather than a list of segment length, endpoint pairs.

lineSeg2 :: [Point] -> GenRoutine
lineSeg2 pts = GenRoutine 27 (flattenTuples2 pts)

GEN08. Produces a smooth piecewise cubic spline curve through the specified points. Neighboring
segments have the same slope at the common points, and it is that of a parabola through that point and its
two neighbors. The slope is zero at the ends.

cubicSpline :: StartPt -> [(SegLength, EndPt)] -> GenRoutine
cubicSpline sp pts = GenRoutine 8 (sp : flattenTuples2 pts)

GEN10. Produces a composite sinusoid. It takes a list of relative strengths of harmonic partials 1, 2,
3, etc. Partials not required should be given strength of zero.

compSine1 :: [PStrength] -> GenRoutine
compSine1 pss = GenRoutine 10 pss

type PStrength = Float

GEN09. Also produces a composite sinusoid, but requires three arguments to specify each contributing
partial. The arguments specify the partial number, which doesn’t have to be an integer (i.e. inharmonic
partials are allowed), the relative partial strength, and the initial phase offset of each partial, expressed in
degrees.

compSine2 :: [(PNum, PStrength, PhaseOffset)] -> GenRoutine
compSine2 args = GenRoutine 9 (flattenTuples3 args)

type PNum = Float
type PhaseOffset = Float

GEN19. Provides all of the functionality ofGEN09, but in addition a DC offset must be specified for
each partial. The DC offset is a vertical displacement, so that a value of 2 will lift a 2-strength partial from
range[−2, 2] to range[0, 4] before further scaling.
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compSine3 :: [(PNum, PStrength, PhaseOffset, DCOffset)] -> GenRoutine
compSine3 args = GenRoutine 19 (flattenTuples4 args)

type DCOffset = Float

GEN11. Produces an additive set of harmonic cosine partials, similar toGEN10. We will represent it
by a function that takes three arguments: the number of harmonics present, the lowest harmonic present, and
a multiplier in an exponential series of harmonics amplitudes (if thex’th harmonic has strength coefficient
of A, then the(x + n)’th harmonic will have a strength ofA ∗ (rn), wherer is the multiplier).

cosineHarms :: NHarms -> LowestHarm -> Mult -> GenRoutine
cosineHarms n l m = GenRoutine 11 [ fromIntegral n, fromIntegral l, m]

type NHarms = Int
type LowestHarm = Int
type Mult = Float

GEN21. Produces tables having selected random distributions.

randomTable :: RandDist -> GenRoutine
randomTable rd = GenRoutine 21 [ fromIntegral rd]

type RandDist = Int

uniform, linear, triangular, expon,
biexpon, gaussian, cauchy, posCauchy :: Int

uniform = 1
linear = 2
triangular = 3
expon = 4
biexpon = 5
gaussian = 6
cauchy = 7
posCauchy = 8

Common Tables For convenience, here are some common function tables, which take as argument
the identifier integer:

simpleSine, square, sawtooth, triangle, whiteNoise :: Table -> Statement

simpleSine n = Table n 0 8192 True
(compSine1 [1])

square n = Table n 0 1024 True
(lineSeg1 1 [(256, 1), (0, -1), (512, -1), (0, 1), (256, 1)])
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sawtooth n = Table n 0 1024 True
(lineSeg1 0 [(512, 1), (0, -1), (512, 0)])

triangle n = Table n 0 1024 True
(lineSeg1 0 [(256, 1), (512, -1), (256, 0)])

whiteNoise n = Table n 0 1024 True
(randomTable uniform)

The following function for a composite sine has an extra argument, a list of harmonic partial strengths:

compSine :: Table -> [PStrength] -> Statement
compSine _ s = Table 6 0 8192 True (compSine1 s)

Naming Instruments and Tables In CSound, each table and instrument has a unique identifying integer
associated with it. Haskore, on the other hand, uses strings to name instruments. What we need is a way to
convert Haskore instrument names to identifier integers that CSound can use. Similar to Haskore’s player
maps, we define a notion of aCSound name mapfor this purpose.

type NameMap = [(Name, Int )]

A name map can be provided directly in the form[("name1", int1), ("name2", int2),
...] , or the programmer can define auxiliary functions to make map construction easier. For example:

makeNameMap :: [Name] -> NameMap
makeNameMap nms =zip nms [1..]

The following function will add a name to an existing name map. If the name is already in the map, an error
results.

addToMap :: NameMap -> Name -> Int -> NameMap
addToMap nmap nm i =

case (getId nmap nm) of
Nothing -> (nm,i) : nmap
Just _ -> error (" addToMap: the name " ++ nm ++

" is already in the name map")

getId :: NameMap -> Name -> Maybe Int
getId nmap nm =

fmap snd ( find (\(n,_) -> n==nm) nmap)

Note the use of the functionfind imported from theList library.

Converting Haskore Music.T to a CSound Score File To convert aMusic.T value into a CSound score
file, we need to:

1. Convert theMusic.T value to aPerformance.T .

2. Convert thePerformance.T value to aScore.T .
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3. Write theScore.T value to a CSound score file.

We already know how to do the first step. Steps two and three will be achieved by the following two
functions:

fromPerformance :: NameMap -> Performance.T -> T
saveIA :: T -> IO ()

The three steps can be put together in whatever way the user wishes, but the most general way would be
this:

fromMusic :: NameMap -> Player.Map
-> Tables -> Performance.Context -> Music.T -> IO ()

fromMusic nmap pmap tables cont m =
saveIA (tables ++ fromPerformance nmap (Performance.fromMusic pmap cont m))

type Tables = T

TheTables argument is a user-defined set of function tables, represented as a sequence ofStatement s
(specifically,Table constructors). (See Section6.2.1.)

From Performance.T to Score.T The translation betweenPerformance.Event s and score
CSoundScore.Note s is straightforward, the only tricky part being:

• The unit of time in aPerformance.T is the second, whereas in aScore.T it is the beat. However,
the default CSound tempo is 60 beats per minute, or one beat per second, as was already mentioned,
and we use this default for ourscorefiles. Thus the two are equivalent, and no translation is necessary.

• CSound wants to get pitch information in the form ’a.b’ but it interprets them very different. Some-
times it is considered as ’octave.pitchclass’ sometimes it is considered as fraction frequency. We try
to cope with it using the two-constructor type Pch.

• Like for MIDI data we must distinguish between Velocity and Volume. Velocity is instrument depen-
dent and different velocities might result in different flavors of a sound. As a quick work-around we
turn the velocity information into volume. Cf.dbamp in the CSound manual.

fromPerformance nmap pf =
zipWith (statementFromEvent nmap)

( tail ( scanl (+) 0 ( map Performance.eTime pf))) pf

statementFromEvent :: NameMap -> StartTime -> Performance.Event -> Statement
statementFromEvent nmap t (Performance.Event _ i p d v pfs) =

case (getId nmap i) of
Nothing -> error ("CSoundScore.statementFromEvent: instrument " ++ i ++ " is unknown")
Just num -> Note num t d (AbsPch p) (velocityToDb v) pfs
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velocityToDb :: Float -> Float
velocityToDb = (50*)

-- still unused , but it should be implemented this way
amplitudeToDb :: Float -> Float
amplitudeToDb v = 6 * logBase 2 v

From Score to Score File Now that we have a value of typeScore , we must write it into a plain
text ASCII file with an extension.sco in a way that CSound will recognize. This is done by the following
function:

saveIA s =
do putStr "\nName your score file "

putStr "(.sco extension will be added): "
name <- getLine
save (name ++ ".sco") s

save :: FilePath -> T -> IO ()
save name s = writeFile (name ++ ".sco") (toString s)

This function asks the user for the name of the score file, opens that file for writing, writes the score into the
file using the functiontoString , and then closes the file.

The score file is a plain text file containing one statement per line. Each statement consists of an opcode,
which is a single letter that determines the action to be taken, and a number of arguments. The opcodes we
will use are “e” for end of score, “t” to set tempo, “f” to create a function table, and “i” for note events.

toString :: T -> String
toString s = unlines ( map statementToString s ++ ["e"]) -- end of score

In the following we will come across several instances where we will need to write a list of floating point
numbers into the file, one number at a time, separated by spaces. To do this, we will need to convert the list
to a string. This is done by the following function:

listToString :: [ Float ] -> String
listToString [] = ""
listToString (n : ns) = " " ++ show n ++ listToString ns

Finally, thestatementToString function:

statementToString :: Statement -> String
statementToString (Tempo t) =

"t 0 " ++ show t
statementToString (Note i st d p v pfs) =

"i " ++ show i ++ " " ++ show st ++ " " ++ show d ++ " " ++
pchToString p ++ " " ++ show v ++ listToString pfs

statementToString (Table t ct s n gr) =
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"f " ++ show t ++ " " ++ show ct ++ " " ++ show s ++
( if n then " " else " -") ++ showGenRoutine gr

where showGenRoutine (SoundFile nm st cn) =
"1 " ++ nm ++ " " ++ show st ++ " 0 " ++ show cn

showGenRoutine (GenRoutine gn gas) =
show gn ++ listToString gas

{- Offset to map from Haskore ’ s pitch 0
to the corresponding pitch of CSound -}

zeroKey :: Int
zeroKey = 84

-- it ’ s exciting whether CSound knows what we mean with the values
-- (0 < note ) is for compatibility with older CSound example files
pchToString :: Pch -> String
pchToString (AbsPch ap) =

let (oct, note) = divMod ( ap+zeroKey) 12
in show oct ++ "." ++ ( if 0 < note && note < 10 then "0" else "") ++ show note

pchToString (Cps freq) = show freq

6.2.2 The Orchestra File

module Haskore.Interface.CSound.Orchestra where

import System . IO
import Data. List ( find , nub , intersperse )
import Data. Ix ( Ix )
import Data. Array ( listArray , (!))
import Haskore.General.Utility (flattenTuples2)
import Haskore.Interface.CSound (Name, Inst)

The orchestra file consists of two parts: aheader, and one or moreinstrument blocks. The header sets
global parameters controlling sampling rate, control rate, and number of output channels. The instrument
blocks define instruments, each identified by a unique integer ID, and containing statements modifying or
generating various audio signals. Each note statement in a score file passes all its arguments—including
the p-fields—to its corresponding instrument in the orchestra file. While some properties vary from note to
note, and should therefore be designed as p-fields, many can be defined within the instrument; the choice is
up to the user.

The orchestra file is represented as:

type T = (Header, [InstBlock])

The orchestra header sets the audio rate, control rate, and number of output channels:

type Header = (AudRate, CtrlRate, Chnls)
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type AudRate = Int -- samples per second
type CtrlRate = Int -- samples per second
type Chnls = Int -- mono=1, stereo =2, surround =4

Digital computers represent continuous analog audio waveforms as a sequence of discrete samples. The
audio rate (AudRate ) is the number of these samples calculated each second. Theoretically, the maximum
frequency that can be represented is equal to one-half the audio rate. Audio CDs contain 44,100 samples per
second of music, giving them a maximum sound frequency of 22,050 Hz, which is as high as most human
ears are able to hear.

Computing 44,100 values each second can be a demanding task for a CPU, even by today’s standards.
However, some signals used as inputs to other signal generating routines don’t require such a high resolution,
and can thus be generated at a lower rate. A good example of this is an amplitude envelope, which changes
relatively slowly, and thus can be generated at a rate much lower than the audio rate. This rate is called the
control rate(CtrlRate ), and is set in the orchestra file header. The audio rate is usually a multiple of the
control rate, but this is not a requirement.

Each instrument block contains a unique identifying integer, as well as anorchestra expressionthat
defines the audio signal characterizing that instrument:

type InstBlock = (Inst, Expression)

Recall thatInst is a type synonym for anInt . This value may be obtained from a string name and a name
map using the functiongetId :: NameMap -> Name -> Maybe Int discussed earlier.

Orchestra Expressions The data typeExpression is the largest deviation that we will make from
the actual CSound design. In CSound, instruments are defined using a sequence of statements that, in
a piecemeal manner, define the various oscillators, summers, constants, etc. that make up an instrument.
These pieces can be given names, and these names can be referenced from other statements. But despite this
rather imperative, statement-oriented approach, it is acually completely functional. In other words, every
CSound instrument can be rewritten as a single expression. It is this “expression language” that we capture
in Expression . A pleasant attribute of the result is that CSound’s ad hoc naming mechanism is replaced
with Haskell’s conventional way of naming things.

The entireExpression data type declaration is shown in Figure11. In what follows, we describe
each of the various constructors in turn.

Constants Const x represents the floating-point constantx .

P-field Arguments Pfield n refers to thenth p-field argument. Recall that all note characteristics,
including pitch, volume, and duration, are passed into the orchestra file as p-fields. For example, to access
the pitch, one would writePfield 4 . To make the access of these most common p-fields easier, we define
the following constants:

noteDur, notePit, noteVol :: Expression
noteDur = Pfield 3
notePit = Pfield 4
noteVol = Pfield 5
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data Expression = Const Float
| Pfield Int

| Function Function Expression
| Function2 Function2 Expression Expression

| Comparison Comparison Expression Expression Expression Expression
| MonoOut Expression
| LeftOut Expression
| RightOut Expression
| StereoOut Expression Expression
| FrontLeftOut Expression
| FrontRightOut Expression
| RearRightOut Expression
| RearLeftOut Expression
| QuadOut Expression Expression Expression Expression

| Line EvalRate Start Durn Finish
| Expon EvalRate Start Durn Finish
| LineSeg EvalRate Start Durn Finish [(Durn, Finish)]
| ExponSeg EvalRate Start Durn Finish [(Durn, Finish)]
| Env EvalRate Sig RTime Durn DTime RShape SAttn DAttn Steep
| Phasor EvalRate Freq InitPhase
| TblLookup EvalRate Index Table IndexMode
| TblLookupI EvalRate Index Table IndexMode
| Osc EvalRate Amp Freq Table
| OscI EvalRate Amp Freq Table
| FMOsc Amp Freq CarFreq ModFreq ModIndex Table
| FMOscI Amp Freq CarFreq ModFreq ModIndex Table
| SampOsc Amp Freq Table
| Random EvalRate Amp
| RandomHold EvalRate Amp HoldHz
| RandomI EvalRate Amp HoldHz
| GenBuzz Amp Freq NumHarms LoHarm Multiplier Table
| Buzz Amp Freq NumHarms Table
| Pluck Amp Freq Table DecayMethod DecArg1 DecArg2
| Delay MaxDel AudioSig
| DelTap TapTime DelLine
| DelTapI TapTime DelLine
| DelayW AudioSig
| Comb AudioSig RevTime LoopTime
| AlPass AudioSig RevTime LoopTime
| Reverb AudioSig RevTime

deriving ( Show, Eq)

Figure 11: TheExpression Data Type
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data Function =
Int

| Frac
| Neg
| Abs
| Sqrt
| Sin
| Cos
| Tan
| SinInv
| CosInv
| TanInv
| SinH
| CosH
| TanH
| Exp
| Log

| AmpToDb
| DbToAmp
| PchToHz
| HzToPch

deriving ( Show, Eq, Ord , Ix )

data Function2 =
Plus

| Minus
| Times
| Divide
| Power
| Modulo

deriving ( Show, Eq, Ord , Ix )

data Comparison =
GreaterThan

| LessThan
| GreaterOrEqTo
| LessOrEqTo
| Equals
| NotEquals

deriving ( Show, Eq, Ord , Ix )

Figure 12: Smaller building blocks of CSound expressions
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It is also useful to define the following standard names, which are identical to those used in CSound:

p1,p2,p3,p4,p5,p6,p7,p8,p9 :: Expression
p1 = Pfield 6
p2 = Pfield 7
p3 = Pfield 8
p4 = Pfield 9
p5 = Pfield 10
p6 = Pfield 11
p7 = Pfield 12
p8 = Pfield 13
p9 = Pfield 14

Arithmetic and Transcendental Functions Arithmetic expressions are represented by the construc-
tors Plus , Minus , Times , Divide , Power , andModulo , each taking twoExpression s as argu-
ments. In addition, there are a number of unary arithmatic functions:Int x andFrac x represent the
integer and fractional parts, respectively, ofx . Abs x , Neg x, Sqrt x , Sin x , andCos x represent
the absolute value, negation, square root, sine and cosine (in radians) ofx , respectively.Exp x represents
e raised to the powerx , andLog x is the natural logarithm ofx .

To facilitate the use of these arithmetic functions, we can makeExpression an instance of certain
numeric type classes, thus providing more conventional names for the various operations.

instance Num Expression where
(+) = Function2 Plus
(-) = Function2 Minus
(*) = Function2 Times
negate = Function Neg
abs = Function Abs
signum x = x / abs x

-- should be replaced by something more sophisticated
fromInteger = Const . fromInteger

instance Fractional Expression where
(/) = Function2 Divide
fromRational = Const . fromRational

instance Floating Expression where
exp = Function Exp
log = Function Log
sqrt = Function Sqrt
(**) = Function2 Power
pi = Const pi
sin = Function Sin
cos = Function Cos
tan = Function Tan
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asin = Function SinInv
acos = Function CosInv
atan = Function TanInv
sinh = Function SinH
cosh = Function CosH
tanh = Function TanH
asinh x = log ( sqrt (x*x+1) + x)
acosh x = log ( sqrt (x*x-1) + x)
atanh x = ( log (1+x) - log (1-x)) / 2

For example,Plus (Pfield 3) (Power (Sin (Pfield 6)) (Const 2)) can now be
written simply asnoteDur + sin p6 ** 2 .

Pitch and Volume Coercions The next set of constructors represent functions that convert between
different CSound pitch and volume representations. Recall that theScore.Note constructor uses decibels
for volume and “pch” notation for pitch. If these values are to be used as inputs into a signal generating or
modifying routine, they must first be converted into units of raw amplitude and hertz, respectively. This is ac-
complished by the functions represented byDbToAmpandPchToHz , and their inverses areAmpToDband
HzToPch . Thus note thatPchToHz (notePit + 0.01) raises the pitch by one semitone, whereas
PchToHz notePit + 0.01 raises the pitch by 0.01 Hz.

Comparison Operators Expression also includes comparison constructorsGreaterThan ,
LessThan , GreaterOrEqTo , LessOrEqTo , Equals , and NotEquals . Each takes four
Expression arguments: the values of the first two are compared, and if the result is true, the expres-
sion evaluates to the third argument; otherwise, it takes on the value of the fourth.6

Output Operators The next group of constructors represent CSound’soutput statements. The con-
structors areMonoOut , LeftOut , RightOut , StereoOut , FrontLeftOut , FrontRightOut ,
RearRightOut , RearLeftOut , andQuadOut . StereoOut takes twoExpression arguments,
QuadOut takes four, and the rest take one.

The top-level of an instrument’sExpression (i.e., the one in theInstBlock value) will normally be
an application of one of these. Furthermore, the constructor used must be in agreement with the number of
output channels specified in the orchestra header—for example, usingLeftOut when the header declares
the resulting sound file to be mono will result in an error.

Signal Generation and Modification The most sophisticatedExpression constructors are those
that emulate CSound’s signal generation and modification functions. There are quite a few of them, and they
are all described here, although the reader is encouraged to read the CSound manual for further details.

6This design emulates that of CSound. A more conventional design would have comparison operators that return a Boolean
value, and a conditional expression to choose between two values based on a Boolean. One could then add Boolean operators such
as “and”, “or”, etc. It seems possible to do this in Haskore, but its translation into CSound would be more difficult, and thus we
take the more conservative approach for now.
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Before defining each constructor, however, there are two general issues to discuss:

First, signals in CSound can be generated at three rates: the note rate (i.e., with every note event), the
control rate, and the audio rate (we discussed the latter two earlier). Many of the signal generating routines
can produce signals at more than one rate, so the rate must be specified as an argument. The following
simple data structure serves this purpose:

data EvalRate = NR -- note rate
| CR -- control rate
| AR -- audio rate

deriving ( Show, Eq)

Second, note in Figure11 that this collection of constructors uses quite a few other type names. In all
cases, however, these are simply type synonyms forExpression , and are used only for clarity. These
type synonyms are listed here in one fell swoop:

type Start = Expression
type Durn = Expression
type Finish = Expression
type Sig = Expression
type RTime = Expression
type DTime = Expression
type RShape = Expression
type SAttn = Expression
type DAttn = Expression
type Steep = Expression
type Freq = Expression
type InitPhase = Expression
type Index = Expression
type Table = Expression
type IndexMode = Expression
type Amp = Expression
type CarFreq = Expression
type ModFreq = Expression
type ModIndex = Expression
type HoldHz = Expression
type NumHarms = Expression
type LoHarm = Expression
type Multiplier = Expression
type DecayMethod = Expression
type DecArg1 = Expression
type DecArg2 = Expression
type MaxDel = Expression
type AudioSig = Expression
type TapTime = Expression
type DelLine = Expression
type RevTime = Expression
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type LoopTime = Expression

We can now discuss each constructor in turn:

1. Line evalrate start durn finish produces values along a straight line fromstart to
finish . The values can be generated either at control or audio rate, and the line covers a period of
time equal todurn seconds.

2. Expon is similar toLine , but Expon evalrate start durn finish produces an expo-
nential curve instead of a straight line.

3. If a more elaborate signal is required, one can use the constructorsLineSeg or ExponSeg , which
take arguments of typeEvalRate , Start , Durn , andFinish , as above, and also[(Durn,
Finish)] . The first four arguments work as before, but only for the first of a number of segments.
The subsequent segment lengths and endpoints are given in the fifth argument. A signal contain-
ing both straight line and exponential segments can be obtained by adding aLineSeg signal and
ExponSeg signal together in an appropriate way.

4. Env evalrate sig rtime durn dtime rshape sattn dattn steep modifies the
signalsig by applying an envelope to it.7 rtime anddtime are the rise time and decay time,
respectively (in seconds), anddurn is the overall duration.rshape is the identifier integer of a
function table storing the rise shape.sattn is the pseudo-steady state attenuation factor. A value
between 0 and 1 will cause the signal to exopnentially decay over the steady period, a value greater
than 1 will cause the signal to exponentially rise, and a value of 1 is a true steady state maintained at
the last rise value.steep , whose value is usually between−0.9 and+0.9, influences the steepness
of the exponential trajectory.dattn is the attenuation factor by which the closing steady state value
is reduced exponentially over the decay period, with value usually around 0.01.

5. Phasor evalrate freq initphase generates a signal moving from 0 to 1 at a given fre-
quency and starting at the given initial phase offset. When used properly as the index to a table
lookup unit,Phasor can simulate the behavior of an oscillator.

6. Table lookup constructorsTblLookup andTblLookupI both takeEvalRate , Index , Table ,
and IndexMode arguments. TheIndexMode is either 0 or 1, differentiating between raw index
and normalized index (zero to one); for convenience we define:

rawIndex, normalIndex :: Expression
rawIndex = 0.0
normalIndex = 1.0

Both TblLookup andTblLookupI return values stored in the specified table at the given index.
The difference is thatTblLookupI uses the fractional part of the index to interpolate between adja-
cent table entries, which generates a smoother signal at a small cost in execution time.

As mentioned, the output of aPhasor can be used as input to a table lookup to simulate an oscillator
whose frequencey is controlled by the note pitch. This can be accomplished easily by the following
piece of Haskore code:

7Although this function is widely-used in CSound, the same effect can be accomplished by creating a signal that is a combination
of straight line and exponential curve segments, and multiplying it by the signal to be modified.
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in TblLookupI AR index table normalIndex

wheretable is some given function table ID. Ifosc is given as argument to an output operator
such asMonoOut , then thisExpression coupled with an instrument ID number (say, 1) produces
a complete instrument block:

Adding a suitable Header would then give us a complete, though somewhat sparse,
CSound.Orchestra.T value.

7. Instead of the above design we could use one of the built-in CSound oscillators,Osc and OscI ,
which differ in the same way asTblLookup andTblLookupI . Each oscillator constructor takes
arguments of typeEvalRate , Amp(in raw amplitude),Freq (in Hertz), andTable . The result is
a signal that oscillates through the function table at the given frequency. Thus the following value is
equivalent toosc above:

8. It is often desirable to use the output of one oscillator to modulate the frequency of another, a process
known asfrequency modulation. FMOsc amp freq carfreq modfreq modindex table
is a signal whose effective modulating frequency isfreq*modfreq , and whose carrier frequency
is freq*carfreq . modindex is theindex of modulation, usually a value between 0 and 4, which
determines the timbre of the resulting signal.FMOscI behaves similarly. Note that there is no
EvalRate argument, since these functions work at audio rate only. The given function table nor-
mally contains a sine wave. This oscillator setup is known as thechowning FMsetup.

9. SampOsc amp freq table oscillates through a table containing an AIFF sampled sound seg-
ment. This is the only time a table can have a length that is not a power of two, as mentioned earlier.
Like FMOsc, SampOsccan only generate values at the audio rate.

10. Random evalrate amp produces a random number series between-amp and+amp at either
control or audio rate.RandomHold evalrate amp holdhz does the same but will hold each
number forholdhz cycles before generating a new one.RandomI evalrate amp holdhz
will in addition provide straight line interpolation between successive numbers.

All the remaining constructors only operate at audio rate, and thus do not haveEvalRate arguments.

11. GenBuzz amp freq numharms loharm multiplier table generates a signal that is an
additive set of harmonically related cosine partials.freq is the fundamental frequency,numharms is
the number of harmonics, andloharm is the lowest harmonic present. The amplitude coefficients of
the harmonics are given by the exponential seriesa, a * multiplier , a * multiplier**2 ,
. . . , a * multiplier**(numharms-1) . The valuea is chosen so that the sum of the ampli-
tudes isamp. table is a function table containing a cosine wave.

12. Buzz is a special case ofGenBuzz in which loharm = 1.0 andMultiplier = 1.0 . table
is a function table containing a sine wave.

Note that the above two constructors have an analog in the generating routineGEN11and the related
functioncosineHarms (see Section6.2.1). cosineHarms stores into a table the same waveform
that would be generated byBuzz or GenBuzz . However, althoughcosineHarms is more efficient,
it has fixed arguments and thus lacks the flexibility ofBuzz andGenBuzz in being able to vary the
argument values with time.
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13. Pluck amp freq table decaymethod decarg1 decarg2 is an audio signal that simu-
lates a plucked string or drum sound, constructed using the Karplus-Strong algorithm. The signal
has amplitudeamp and frequencyfreq . It is produced by iterating through an internal buffer that
initially contains a copy oftable and is smoothed on every pass to simulate the natural decay of
a plucked string. If 0.0 is used fortable , then the initial buffer is filled with a random sequence.
There are six possible decay modes:

(a) simple smoothing, which ignores the two arguments;

(b) stretched smoothing, which stretches the smoothing time by a factor ofdecarg1 , ignoring
decarg2 ;

(c) simple drum, wheredecarg1 is a “roughness factor” (0 for pitch, 1 for white noise; a value of
0.5 gives an optimal snare drum sound);

(d) stretched drum, which contains both roughness (decarg1 ) and stretch (decarg2 ) factors;

(e) weighted smoothing, in whichdecarg1 gives the weight of the current sample anddecarg2
the weight of the previous one (decarg1+decarg2 must be≤ 1); and

(f) recursive filter smoothing, which ignores both arguments.

Here again are some helpful constants:

simpleSmooth, stretchSmooth, simpleDrum, stretchDrum,
weightedSmooth, filterSmooth :: Expression

simpleSmooth = 1.0
stretchSmooth = 2.0
simpleDrum = 3.0
stretchDrum = 4.0
weightedSmooth = 5.0
filterSmooth = 6.0

14. Delay deltime audiosig establishes a digital delay line, whereaudiosig is the source, and
deltime is the delay time in seconds.

The delay line can also betapped by DelayTap deltime delline and DelayTapI
deltime delline , wheredeltime is the tap delay, anddelline must be a delay line cre-
ated by theDelay constructor above. Again,DelayTapI uses interpolation, and may take up to
twice as long asDelayTap to run, but produces higher precision results and thus a cleaner signal.

(Note: the constructorDelayW is used in the translation described later to mark the end of a sequence
of delay taps, and is not intended for use by the user.)

15. Reverberation can be added to a signal usingComb audiosig revtime looptime , AlPass
audiosig revtime looptime , andReverb audiosig revtime . revtime is the time
in seconds it takes a signal to decay to 1/1000th of its original amplitude, andlooptime is the echo
density.Combproduces a “colored” reverb,AlPass a “flat” reverb, andReverb a “natural room”
reverb.

87



mkList :: Expression -> [(EvalRate, Expression)]
mkList (Const _) = []
mkList (Pfield _) = []
mkList (Function _ x) = mkList x
mkList (Function2 _ x1 x2) = mkListAll [x1,x2]
mkList (Comparison _ x1 x2 x3 x4) = mkListAll [x1,x2,x3,x4]
mkList (QuadOut x1 x2 x3 x4) = mkListAll [x1,x2,x3,x4]
mkList (StereoOut x1 x2) = mkListAll [x1,x2]
mkList (MonoOut x) = mkList x
mkList (LeftOut x) = mkList x
mkList (RightOut x) = mkList x
mkList (FrontLeftOut x) = mkList x
mkList (FrontRightOut x) = mkList x
mkList (RearRightOut x) = mkList x
mkList (RearLeftOut x) = mkList x
mkList oe@(Line er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@(Expon er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@(LineSeg er x1 x2 x3 xs)

= (er,oe) : mkListAll (x1:x2:x3: flattenTuples2 xs)
mkList oe@(ExponSeg er x1 x2 x3 xs)

= (er,oe) : mkListAll (x1:x2:x3: flattenTuples2 xs)
mkList oe@(Env er x1 x2 x3 x4 x5 x6 x7 x8)

= (er,oe) : mkListAll [x1,x2,x3,x4,x5,x6,x7,x8]
mkList oe@(Phasor er x1 x2) = (er,oe) : mkListAll [x1,x2]
mkList oe@(TblLookup er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@(TblLookupI er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@(Osc er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@(OscI er x1 x2 x3) = (er,oe) : mkListAll [x1,x2,x3]
mkList oe@( Random er x) = (er,oe) : mkList x
mkList oe@(RandomHold er x1 x2) = (er,oe) : mkListAll [x1,x2]
mkList oe@(RandomI er x1 x2) = (er,oe) : mkListAll [x1,x2]
mkList oe@(FMOsc x1 x2 x3 x4 x5 x6)= (AR,oe) : mkListAll [x1,x2,x3,x4,x5,x6]
mkList oe@(FMOscI x1 x2 x3 x4 x5 x6)

= (AR,oe) : mkListAll [x1,x2,x3,x4,x5,x6]
mkList oe@(SampOsc x1 x2 x3) = (AR,oe) : mkListAll [x1,x2,x3]
mkList oe@(GenBuzz x1 x2 x3 x4 x5 x6)

= (AR,oe) : mkListAll [x1,x2,x3,x4,x5,x6]
mkList oe@(Buzz x1 x2 x3 x4) = (AR,oe) : mkListAll [x1,x2,x3,x4]
mkList oe@(Pluck x1 x2 x3 x4 x5 x6)= (AR,oe) : mkListAll [x1,x2,x3,x4,x5,x6]
mkList oe@(Delay x1 x2) = (AR,oe) : mkListAll [x1,x2]
mkList oe@(DelTap _ x2) = (AR,oe) : mkList x2
mkList oe@(DelTapI _ x2) = (AR,oe) : mkList x2
mkList (DelayW _) = error "DelayW not for you!"
mkList oe@(Comb x1 x2 x3) = (AR,oe) : mkListAll [x1,x2,x3]
mkList oe@(AlPass x1 x2 x3) = (AR,oe) : mkListAll [x1,x2,x3]
mkList oe@(Reverb x1 x2) = (AR,oe) : mkListAll [x1,x2]

Figure 13: ThemkList Function

Converting Orchestra Values to Orchestra Files We must now convert theExpression values into
a form which can be written into a CSound.sco file. As mentioned earlier, each signal generation or
modification statement in CSound assigns its result a string name. This name is used whenever another
statement takes the signal as an argument. Names of signals generated at note rate must begin with the letter
“i”, control rate with letter “k”, and audio rate with letter “a”. The output statements do not generate a signal
so they do not have a result name.

The functionmkList is shown in Figure13, and creates an entry in the list for every signal generating,
modifying, or outputting constructor. It uses the following auxiliary functions:

mkListAll :: [Expression] -> [(EvalRate, Expression)]
mkListAll = foldr (++) [] . map mkList

addNames :: [(EvalRate,Expression)] -> [(Name,Expression)]
addNames ls = zipWith counter ls [(1:: Int )..]
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where counter (er,x) n =
let var = case er of

AR -> ’a’ : show n
CR -> ’k’ : show n
NR -> ’i’ : show n

in (var,x)

Putting all of the above together, here is a function that converts anExpression into a list of proper
name /Expression pairs. Each one of these will eventually result in one statement in the CSound
orchestra file. (The result ofmkList is reversed to ensure that a definition exists before it is used; and this
must be donebeforenub is applied (which removes duplicates), for the same reason.)

processExp :: Expression -> [(Name, Expression)]
processExp = addNames . nub . procDelay . reverse . mkList

The functionprocDelay is used to process delay lines, which require special treatment because a
delay line followed by a number of taps must be ended in Csound with aDelayW command.

procDelay :: [(EvalRate, Expression)] -> [(EvalRate, Expression)]
procDelay [] = []
procDelay (x@(AR, d@(Delay _ _)) : xs) = [x] ++ procTaps d xs ++ procDelay xs
procDelay (x : xs) = x : procDelay xs

procTaps :: Expression -> [(EvalRate, Expression)] -> [(EvalRate, Expression)]
procTaps (Delay _ sig) [] = [(AR, DelayW sig)]
procTaps d (x@(AR,DelTap t dl) : xs) =

if d == dl then (mkList t ++ [x] ++ procTaps d xs)
else procTaps d xs

procTaps d (x@(AR,DelTapI t dl): xs) =
if d == dl then (mkList t ++ [x] ++ procTaps d xs)

else procTaps d xs
procTaps d (_ : xs) = procTaps d xs
procTaps _ _ = error "unhandled case in procTaps"

The functions that follow are used to write the orchestra file.saveIA is similar tosaveScoreIA : it
asks the user for a file name, opens the file, writes the given orchestra value to the file, and then closes the
file.

saveIA :: T -> IO ()
saveIA orch =

do putStr "\nName your orchestra file "
putStr "(.orc extension will be added): "
name <- getLine
save name orch

save :: FilePath -> T -> IO ()
save name orch =

writeFile (name ++ ".orc") (toString orch)
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CSound.Orchestra.toString splits the task of writing the orchestra into two parts: writing the
header and writing the instrument blocks

toString :: T -> String
toString (hdr,ibs) =

headerToString hdr ++ concatMap instBlockToString ibs

Writing the header is relatively simple, and is accomplished by the following function:

headerToString :: Header -> String
headerToString (a,k,nc) =

"sr = " ++ show a ++
"\nkr = " ++ show k ++
"\nksmps = " ++ show ( fromIntegral a / fromIntegral k :: Double ) ++
"\nnchnls = " ++ show nc ++
"\n"

instBlockToString writes a single instrument block.

instBlockToString :: InstBlock -> String
instBlockToString (num,ox) =

"\ninstr " ++ show num ++ "\n" ++
writeExps (processExp ox ++ [("",ox)]) ++
"endin\n"

Recall that after processing, theExpression becomes a list of(Name, Expression) pairs. The
last few functions write each of these namedExpression s as a statement in the orchestra file. Whenever
a signal generation/modification constructor is encountered in an argument list of another constructor, the
argument’s string name is used instead, as found in the list of(Name, Expression) pairs.

6.2.3 An Orchestra Example

Figure 16 shows a typical CSound orchestra file. Figure17 shows how this same functionality would
be achieved in Haskore using anCSound.Orchestra.T value. Finally, Figure18 shows the result of
applyingOrchestra.saveIA to orc1 shown in Figure17. Figures16and18should be compared: you
will note that except for name changes, they are the same, as they should be.

6.2.4 Tutorial

module Haskore.Interface.CSound.Tutorial where

import Haskore.Music as Music
import qualified Haskore.Music.Performance as Performance
import qualified Haskore.Music.PerformanceContext as Context
import qualified Haskore.Music.Player as Player
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writeExps :: [(Name,Expression)] -> String
writeExps noes = concatMap writeExp noes where

writeExp :: (Name,Expression) -> String
writeExp (_, MonoOut x) = "out " ++ writeArgs [x]
writeExp (_, LeftOut x) = "outs1 " ++ writeArgs [x]
writeExp (_, RightOut x) = "outs2 " ++ writeArgs [x]
writeExp (_, StereoOut x1 x2) = "outs " ++ writeArgs [x1,x2]
writeExp (_, FrontLeftOut x) = "outq1 " ++ writeArgs [x]
writeExp (_, FrontRightOut x) = "outq2 " ++ writeArgs [x]
writeExp (_, RearRightOut x) = "outq3 " ++ writeArgs [x]
writeExp (_, RearLeftOut x) = "outq4 " ++ writeArgs [x]
writeExp (_, QuadOut x1 x2 x3 x4) = "outq " ++ writeArgs [x1,x2,x3,x4]
writeExp (nm, Line _ x1 x2 x3) =

(nm ++ " line ") ++ writeArgs [x1,x2,x3]
writeExp (nm, Expon _ x1 x2 x3) =

(nm ++ " expon ") ++ writeArgs [x1,x2,x3]
writeExp (nm, LineSeg _ x1 x2 x3 xlist) =

(nm ++ " linseg ") ++ writeArgs (x1:x2:x3: flattenTuples2 xlist)
writeExp (nm, ExponSeg _ x1 x2 x3 xlist) =

(nm ++ " expseg ") ++ writeArgs (x1:x2:x3: flattenTuples2 xlist)
writeExp (nm, Env _ x1 x2 x3 x4 x5 x6 x7 x8) =

(nm ++ " envlpx ") ++ writeArgs [x1,x2,x3,x4,x5,x6,x7,x8]
writeExp (nm, Phasor _ x1 x2) =

(nm ++ " phasor ") ++ writeArgs [x1,x2]
writeExp (nm, TblLookup _ x1 x2 x3) =

(nm ++ " table ") ++ writeArgs [x1,x2,x3]
writeExp (nm, TblLookupI _ x1 x2 x3) =

(nm ++ " tablei ") ++ writeArgs [x1,x2,x3]
writeExp (nm, Osc _ x1 x2 x3) =

(nm ++ " oscil ") ++ writeArgs [x1,x2,x3]
writeExp (nm, OscI _ x1 x2 x3) =

(nm ++ " oscili ") ++ writeArgs [x1,x2,x3]
writeExp (nm, FMOsc x1 x2 x3 x4 x5 x6) =

(nm ++ " foscil ") ++ writeArgs [x1,x2,x3,x4,x5,x6]
writeExp (nm, FMOscI x1 x2 x3 x4 x5 x6) =

(nm ++ " foscili ") ++ writeArgs [x1,x2,x3,x4,x5,x6]
writeExp (nm, SampOsc x1 x2 x3) =

(nm ++ " loscil ") ++ writeArgs [x1,x2,x3]
writeExp (nm, Random _ x) =

(nm ++ " rand ") ++ writeArgs [x]
writeExp (nm, RandomHold _ x1 x2) =

(nm ++ " randh ") ++ writeArgs [x1,x2]
writeExp (nm, RandomI _ x1 x2) =

(nm ++ " randi ") ++ writeArgs [x1,x2]
writeExp (nm, GenBuzz x1 x2 x3 x4 x5 x6) =

(nm ++ " gbuzz ") ++ writeArgs [x1,x2,x3,x4,x5,x6]
writeExp (nm, Buzz x1 x2 x3 x4) =

(nm ++ " buzz ") ++ writeArgs [x1,x2,x3,x4]
writeExp (nm, Pluck x1 x2 x3 x4 x5 x6) =

(nm ++ " pluck ") ++ writeArgs [x1,x2,x2,x3,x4,x5,x6]
writeExp (nm, Delay x1 _) = (nm ++ " delayr ") ++ writeArgs [x1]
writeExp (_, DelayW x) = (" delayw ") ++ writeArgs [x]
writeExp (nm, DelTap x1 _) = (nm ++ " deltap ") ++ writeArgs [x1]
writeExp (nm, DelTapI x1 _) = (nm ++ " deltapi ") ++ writeArgs [x1]
writeExp (nm, Comb x1 x2 x3) = (nm ++ " comb ") ++ writeArgs [x1,x2,x3]
writeExp (nm, AlPass x1 x2 x3) = (nm ++ " alpass ") ++ writeArgs [x1,x2,x3]
writeExp (nm, Reverb x1 x2) = (nm ++ " reverb ") ++ writeArgs [x1,x2]
writeExp _ = error "writeExp: unknown constructor\n"

writeArgs :: [Expression] -> String
writeArgs = (++"\n") . concat . intersperse ", " . map (showExp noes)

Figure 14: The FunctionwriteExp
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showExp :: [(Name, Expression)] -> Expression -> String
showExp _ (Const x) = show x
showExp _ (Pfield p) = "p" ++ show p
showExp xs (Function f x) = showFunc xs f x
showExp xs (Function2 f x1 x2) = showBin xs f x1 x2
showExp xs (Comparison c x1 x2 x3 x4) = showComp xs c x1 x2 x3 x4
showExp xs ox = case find (\(_,oexp) -> ox==oexp) xs of

Just (nm,_) -> nm
Nothing -> error ("showExp "++ show ox++": constructor not found\n")

showFunc :: [(Name, Expression)] -> Function -> Expression -> String
showFunc xs HzToPch x = "pchoct (octcps(" ++ showExp xs x ++ "))"
showFunc xs f x =

let s = listArray ( Int ,PchToHz)
["int", "frac",

"abs", "-", "sqrt",
"sin", "cos", "tan",
"sininv", "cosinv", "taninv",
"sinh", "cosh", "tanh",
"exp", "log",
"dbamp", "ampdb",
"cpspch"] ! f

in s ++ "(" ++ showExp xs x ++ ")"

showBin :: [(Name, Expression)] -> Function2 -> Expression -> Expression -> String
showBin xs f x1 x2 =

let s = listArray (Plus,Modulo)
["+", "-", "*", "/", "ˆ", "%"] ! f

in "(" ++ showExp xs x1 ++ " " ++ s ++ " " ++ showExp xs x2 ++ ")"

showComp :: [(Name, Expression)] -> Comparison
-> Expression -> Expression -> Expression -> Expression -> String

showComp xs c x1 x2 x3 x4 =
let s = listArray (GreaterThan,NotEquals)

[">", "<", ">=", "<=", "==", "!="] ! c
in "(" ++ showExp xs x1 ++ " " ++ s ++ " " ++ showExp xs x2 ++ " ? " ++

showExp xs x3 ++ " : " ++ showExp xs x4 ++ ")"

Figure 15: The FunctionshowExp
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= 48000
= 24000

mps = 2
hnls = 2

str 4

ote = cpspch(p5)

envlpx ampdb(p4), .001, p3, .05, 6, -.1, .01
envlpx ampdb(p4), .0005, .1, .1, 6, -.05, .01
envlpx ampdb(p4), .001, p3, p3, 6, -.3, .01

oscili k1, inote, 1
oscili k1, inote * 1.004, 1
oscili k2, inote * 16, 1
oscili k3, inote, 5
oscili k3, inote * 1.004, 5

ts (a2 + a3 + a4) * .75, (a1 + a3 + a5) * .75

din

Figure 16: Sample CSound Orchestra File
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pchToHz, dbToAmp :: Expression -> Expression
pchToHz = Function PchToHz
dbToAmp = Function DbToAmp

orc1 :: T
orc1 =

let hdr = (48000, 24000, 2)
inote = pchToHz p5
k1 = Env CR (dbToAmp p4) 0.001 p3 0.05 6 (-0.1) 0.01 0
k2 = Env CR (dbToAmp p4) 0.0005 0.1 0.1 6 (-0.05) 0.01 0
k3 = Env CR (dbToAmp p4) 0.001 p3 p3 6 (-0.3) 0.01 0
a1 = OscI AR k1 inote 1
a2 = OscI AR k1 (inote*1.004) 1
a3 = OscI AR k2 (inote*16) 1
a4 = OscI AR k3 inote 5
a5 = OscI AR k3 (inote*1.004) 5
out = StereoOut ((a2+a3+a4) * 0.75) ((a1+a3+a5) * 0.75)
ib = (4,out)

in (hdr,[ib])

t1 :: [(Name, Expression)]
t1 = processExp ( snd ( head ( snd orc1)))

Figure 17: Haskore Orchestra Definition

= 48000
= 24000

mps = 2.0
hnls = 2

str 4
envlpx ampdb(p4), 0.001, p3, p3, 6.0, -0.3, 0.01, 0.0
osci k1, (cpspch(p5) * 1.004), 5.0
envlpx ampdb(p4), 0.0005, 0.1, 0.1, 6.0, -0.05, 0.01, 0.0
osci k3, (cpspch(p5) * 16.0), 1.0
envlpx ampdb(p4), 0.001, p3, 0.05, 6.0, -0.1, 0.01, 0.0
osci k5, cpspch(p5), 1.0
osci k1, cpspch(p5), 5.0
osci k5, (cpspch(p5) * 1.004), 1.0

ts (((a8 + a4) + a7) * 0.75), (((a6 + a4) + a2) * 0.75)
din

Figure 18: Result ofOrchestra.saveIA orc1
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import System . IO
import System .Cmd( system )

import Haskore.Interface.CSound(Name)
import Haskore.Interface.CSound.Orchestra as Orchestra
import Haskore.Interface.CSound.Score as Score

type OrcExp = Orchestra.Expression

This brief tutorial is designed to introduce the user to the capabilities of the CSound software synthesizer
and sound synthesis in general.

Additive Synthesis The first part of the tutorial introducesadditive synthesis. Additive synthesis is the
most basic, yet the most powerful synthesis technique available, giving complete control over the sound
waveform. The basic premiss behind additive sound synthesis is quite simple - defining a complex sound
by specifying each contributing sine wave. The computer is very good at generating pure tones, but these
are not very interesting. However, any sound imaginable can be reproduced as a sum of pure tones. We can
define an instrument of pure tones easily in Haskore. First we define afunction tablecontaining a lone sine
wave. We can do this using thesimpleSine function defined in the CSound module:

pureToneTN :: Int
pureToneTN = 1
pureToneTable :: Orchestra.Table
pureToneTable = fromIntegral pureToneTN
pureTone :: Score.Statement
pureTone = Score.Table pureToneTN 0 8192 True (compSine1 [1.0])

pureToneTN is the table number of the simple sine wave. We will adopt the convention in this tutorial
that variables ending withTN represent table numbers. Recall thatcompSine1 is defined in the module
CSound as a sine wave generating routine (GEN10). In order to have a complete score file, we also need a
tune. Here is a simple example:

tune1 :: Music.T

tune1 = line ( map ( flip ($) [Music.Velocity 1.5])
[ c 1 hn, e 1 hn, g 1 hn,

c 2 hn, a 1 hn, c 2 qn,
a 1 qn, g 1 dhn ] ++ [qnr])

Recall that the tune, a value of typeMusic.T , must first be converted to a value of type
Performance using the functionPerformance.fromMusic defined in the moduleMusic , and then
thePerformance must turned into aScore.T , usingperfToScore defined in theCSound module.
Since the functionperform expects to see aname map, we must create one. We won’t be using more than
two simple instruments in this tutorial:

instNames :: NameMap
instNames = [("inst1", 1), ("inst2", 2)]
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inst1, inst2 :: Int
inst1 = 1
inst2 = 2

We can now create a complete Score.T as follows:

context :: Context.T
context =

Context.setInstrument "" $
Context.setDur 1 $
Context.deflt

scored :: Music.T -> Score.T
scored m = Score.fromPerformance instNames

(Performance.fromMusic Player.fancyMap context m)

score1 = pureTone : scored (setInstrument "inst1" tune1)

Let’s define an instrument in the orchestra file that will use the function tablepureTone :

oe1 :: OrcExp
oe1 = let signal = Osc AR (dbToAmp noteVol) (pchToHz notePit) pureToneTable

in StereoOut signal signal

This instrument will simply oscillate through the function table containing the sine wave at the appropriate
frequency given bynotePit , and the resulting sound will have an amplitude given bynoteVol . Note
that theoe1 expression above is anOrcExp , not a completeOrchestra.T . We need to define aheader
and associateoe1 with the instrument that’s playing it:

hdr :: ( Int , Int , Int )
hdr = (44100, 4410, 2)

o1, o2, o3, o4, o5, o6, o7, o8, o9, o10,
o11, o12, o13, o14, o15, o16, o17, o18, o19, o20

:: (( Int , Int , Int ), [( Int , Orchestra.Expression)])
tut1, tut2, tut3, tut4, tut5, tut6, tut7, tut8, tut9, tut10,

tut11, tut12, tut13, tut14, tut15, tut16, tut17, tut18, tut19, tut20
:: (Name, Score.T, Orchestra.T)

score1, score2, score3, score4, score5, score6, score7, score8
:: [Score.Statement]

o1 = let i = (inst1, oe1)
in (hdr, [i])

The header above indicates that the audio signals are generated at 44,100 Hz (CD quality), the control signals
are generated at 4,410 Hz, and there are 2 output channels for stereo sound. Now we have a complete score
and orchestra that can be converted to a sound file by CSound and played as follows:
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csoundDir :: Name
csoundDir = "src/Test/CSound"
-- csoundDir = " C:/ TEMP/ csound "

tut1 = example "tut01" score1 o1

If you listen to the tune, you will notice that it sounds very thin and uninteresting. Most musical sounds
are not pure. Instead they usually contain a sine wave of dominant frequency, called afundamental, and
a number of other sine waves calledpartials. Partials with frequencies that are integer multiples of the
fundamental are calledharmonics. In musical terms, the first harmonic lies an octave above the fundamental,
second harmonic a fifth above the first one, the third harmonic lies a major third above the second harmonic
etc. This is the familiarovertone series. We can add harmonics to our sine wave instrument easily using
thecompSine function defined in theCsound module. The function takes a list of harmonic strengths as
arguments. The following creates a function table containing the fundamental and the first two harmonics at
two thirds and one third of the strength of the fundamental:

twoHarmsTN :: Int
twoHarmsTN = 2
twoHarms :: Score.Statement
twoHarms = Score.Table twoHarmsTN 0 8192 True (compSine1 [1.0, 0.66, 0.33])

We can again proceed to create complete score and orchestra files as above:

score2 = twoHarms : scored (setInstrument "inst1" tune1)

oe2 :: OrcExp
oe2 = let signal = Osc AR (dbToAmp noteVol) (pchToHz notePit)

( fromIntegral twoHarmsTN)
in StereoOut signal signal

o2 = let i = (inst1, oe2)
in (hdr, [i])

tut2 = example "tut02" score2 o2

The orchestra file is the same as before - a single oscillator scanning a function table at a given frequency
and volume. This time, however, the tune will not sound as thin as before since the table now contains a
function that is an addition of three sine waves. (Note that the same effect could be achieved using a simple
sine wave table and three oscillators). Not all musical sounds contain harmonic partials exclusively, and
never do we encounter instruments with static amplitude envelope like the ones we have seen so far. Most
sounds, musical or not, evolve and change throughout their duration. Let’s define an instrument containing
both harmonic and nonharmonic partials, that starts at maximum amplitude with a straight line decay. We
will use the functioncompSine2 from theCSound module to create the function table.compSine2
takes a list of triples as an argument. The triples specify the partial number as a multiple of the fundamental,
relative partial strength, and initial phase offset:

manySinesTN :: Int
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manySinesTN = 3
manySines :: Score.Statement
manySines = Score.Table manySinesTN 0 8192 True (compSine2 [(0.5, 0.9, 0.0),

(1.0, 1.0, 0.0), (1.1, 0.7, 0.0), (2.0, 0.6, 0.0),
(2.5, 0.3, 0.0), (3.0, 0.33, 0.0), (5.0, 0.2, 0.0)])

Thus this complex will contain the second, third, and fifth harmonic, nonharmonic partials at frequencies
of 1.1 and 2.5 times the fundamental, and a component at half the frequency of the fundamental. Their
strengths relative to the fundamental are given by the second argument, and they all start in sync with zero
offset. Now we can proceed as before to create score and orchestra files. We will define anamplitude
envelopeto apply to each note as we oscillate through the table. The amplitude envelope will be a straight
line signal ramping from 1.0 to 0.0 over the duration of the note. This signal will be generated atcontrol rate
rather than audio rate, because the control rate is more than sufficient (the audio signal will change volume
4,410 times a second), and the slower rate will improve performance.

score3 = manySines : scored (setInstrument "inst1" tune1)

oe3 :: OrcExp
oe3 = let ampenv = Line CR 1.0 noteDur 0.0

signal = Osc AR (ampenv * dbToAmp noteVol) (pchToHz notePit)
( fromIntegral manySinesTN)

in StereoOut signal signal

o3 = let i = (inst1, oe3)
in (hdr, [i])

tut3 = example "tut03" score3 o3

Not only do musical sounds usually evolve in terms of overall amplitude, they also evolve theirspectra.
In other words, the contributing partials do not usually all have the same amplitude envelope, and so their
contribution to the overall sound isn’t static. Let us illustrate the point using the same set of partials as
in the above example. Instead of creating a table containing a complex waveform, however, we will use
multiple oscillators going through the simple sine wave table we created at the beginning of this tutorial
at the appropriate frequencies. Thus instead of the partials being fused together, each can have its own
amplitude envelope, making the sound evolve over time. The score will be score1, defined above.

oe4 :: OrcExp
oe4 = let pitch = pchToHz notePit

amp = dbToAmp noteVol
mkLine t = LineSeg CR 0 (noteDur*t) 1 [(noteDur * (1-t), 0)]
aenv1 = Line CR 1 noteDur 0
aenv2 = mkLine 0.17
aenv3 = mkLine 0.33
aenv4 = mkLine 0.50
aenv5 = mkLine 0.67
aenv6 = mkLine 0.83
aenv7 = Line CR 0 noteDur 1
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mkOsc ae p = Osc AR (ae * amp) (pitch * p) pureToneTable
a1 = mkOsc aenv1 0.5
a2 = mkOsc aenv2 1.0
a3 = mkOsc aenv3 1.1
a4 = mkOsc aenv4 2.0
a5 = mkOsc aenv5 2.5
a6 = mkOsc aenv6 3.0
a7 = mkOsc aenv7 5.0
out = 0.5 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)

in StereoOut out out

o4 = let i = (inst1, oe4)
in (hdr, [i])

tut4 = example "tut04" score1 o4

So far, we have only used function tables to generate audio signals, but they can come very handy inmodify-
ing signals. Let us create a function table that we can use as an amplitude envelope to make our instrument
more interesting. The envelope will contain an immediate sharp attack and decay, and then a second, more
gradual one, so we’ll have two attack/decay events per note. We’ll use the cubic spline curve generating
routine to do this:

coolEnvTN :: Int
coolEnvTN = 4
coolEnv :: Score.Statement
coolEnv = Score.Table coolEnvTN 0 8192 True (cubicSpline 1 [(1692, 0.2),

(3000, 1), (3500, 0)])

Let us also add somepfieldsto the notes in our score. The two pfields we add will be used forpanning- the
first one will be the starting percentage of the left channel, the second one the ending percentage (1 means
all left, 0 all right, 0.5 middle. Pfields of 1 and 0 will cause the note to pan completely from left to right for
example)

tune2 :: Music.T
tune2 = let attr start end = [Velocity 1.4, PFields [start, end]]

in c 1 hn (attr 1.0 0.75) +:+
e 1 hn (attr 0.75 0.5) +:+
g 1 hn (attr 0.5 0.25) +:+
c 2 hn (attr 0.25 0.0) +:+
a 1 hn (attr 0.0 1.0) +:+
c 2 qn (attr 0.0 0.0) +:+
a 1 qn (attr 1.0 1.0) +:+

(g 1 dhn (attr 1.0 0.0) =:=
g 1 dhn (attr 0.0 1.0))+:+ qnr

So far we have limited ourselves to using only sine waves for our audio output, even though Csound places
no such restrictions on us. Any repeating waveform, of any shape, can be used to produce pitched sounds.
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In essence, when we are adding sinewaves, we are changing the shape of the wave. For example, adding odd
harmonics to a fundamental at strengths equal to the inverse of their partial number (ie. third harmonic would
be 1/3 the strength of the fundamental, fifth harmonic 1/5 the fundamental etc) would produce asquarewave
which has a raspy sound to it. Another common waveform is thesawtooth, and the more mellow sounding
triangle. TheCSound module already contains functions to create these common waveforms. Let’s use
them to create tables that we can use in an instrument:

triangleTN, squareTN, sawtoothTN :: Int
triangleTN = 5
squareTN = 6
sawtoothTN = 7
triangleT, squareT, sawtoothT :: Score.Statement
triangleT = triangle triangleTN
squareT = square squareTN
sawtoothT = sawtooth sawtoothTN

score4 = squareT : triangleT : sawtoothT : coolEnv :
scored (changeTempo 0.5 (setInstrument "inst1" tune2))

oe5 :: OrcExp
oe5 = let pitch = pchToHz notePit

amp = dbToAmp noteVol
pan = Line CR p1 noteDur p2
oscF = 1 / noteDur
ampen = Osc CR amp oscF ( fromIntegral coolEnvTN)
signal = Osc AR ampen pitch ( fromIntegral squareTN)
left = signal * pan
right = signal * (1-pan)

in StereoOut left right

o5 = let i = (inst1, oe5)
in (hdr, [i])

tut5 = example "tut05" score4 o5

This will oscillate through a table containing the square wave. Check out the other waveforms too and see
what they sound like. This can be done by specifying the table to be used in the orchestra file. As our last
example of additive synthesis, we will introduce an orchestra with multiple instruments. The bass will be
mostly in the left channel, and will be the same as the third example instrument in this section. It will play
the tune two octaves below the instrument in the right channel, using an orchestra identical tooe3 with the
addition of the panning feature:

score5 = manySines : pureTone : scored (setInstrument "inst1" tune1) ++
scored (setInstrument "inst2" tune1)

oe6 :: OrcExp
oe6 = let ampenv = Line CR 1.0 noteDur 0.0
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signal = Osc AR (ampenv * dbToAmp noteVol)
(pchToHz (notePit - 2)) ( fromIntegral manySinesTN)

left = 0.8 * signal
right = 0.2 * signal

in StereoOut left right

oe7 :: OrcExp
oe7 = let pitch = pchToHz notePit

amp = dbToAmp noteVol
mkLine t = LineSeg CR 0 (noteDur*t) 0.5 [(noteDur * (1-t), 0)]
aenv1 = Line CR 0.5 noteDur 0
aenv2 = mkLine 0.17
aenv3 = mkLine 0.33
aenv4 = mkLine 0.50
aenv5 = mkLine 0.67
aenv6 = mkLine 0.83
aenv7 = Line CR 0 noteDur 0.5
mkOsc ae p = Osc AR (ae * amp) (pitch * p) pureToneTable
a1 = mkOsc aenv1 0.5
a2 = mkOsc aenv2 1.0
a3 = mkOsc aenv3 1.1
a4 = mkOsc aenv4 2.0
a5 = mkOsc aenv5 2.5
a6 = mkOsc aenv6 3.0
a7 = mkOsc aenv7 5.0
left = 0.2 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)
right = 0.8 * (a1 + a2 + a3 + a4 + a5 + a6 + a7)

in StereoOut left right

o6 = let i1 = (inst1, oe6)
i2 = (inst2, oe7)

in (hdr, [i1, i2])

tut6 = example "tut06" score5 o6

Additive synthesis is the most powerful tool in computer music and sound synthesis in general. It can be
used to create any sound imaginable, whether completely synthetic or a simulation of a real-world sound,
and everyone interested in using the computer to synthesize sound should be well versed in it. The most
significant drawback of additive synthesis is that it requires huge amounts of control data, and potentially
thousands of oscillators. There are other synthesis techniques, such asmodulation synthesis, that can be
used to create rich and interesting timbres at a fraction of the cost of additive synthesis, though no other
synthesis technique provides quite the same degree of control.

Modulation Synthesis While additive synthesis provides full control and great flexibility, it is quiet clear
that the enormous amounts of control data make it impractical for even moderately complicated sounds.
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There is a class of synthesis techniques that usemodulationto produce rich, time-varying timbres at a
fraction of the storage and time cost of additive synthesis. The basic idea behind modulation synthesis
is controlling the amplitude and/or frequency of the main periodic signal, called thecarrier, by another
periodic signal, called themodulator. The two main kinds of modulation synthesis areamplitude modulation
andfrequency modulationsynthesis. Let’s start our discussion with the simpler one of the two - amplitude
synthesis. We have already shown how to supply a time varying amplitude envelope to an oscillator. What
would happen if this amplitude envelope was itself an oscillating signal? Supplying a low frequency (<
20Hz) modulating signal would create a predictable effect - we would hear the volume of the carrier signal
go periodically up and down. However, as the modulator moves into the audible frequency range, the carrier
changes timbre as new frequencies appear in the spectrum. The new frequencies are equal to the sum and
difference of the carrier and modulator. So for example, if the frequency of the main signal (carrier) is C
= 500Hz, and the frequency of the modulator is M = 100Hz, the audible frequencies will be the carrier
C (500Hz), C + M (600Hz), and C - M (400Hz). The amplitude of the two new sidebands depends on the
amplitude of the modulator, but will never exceed half the amplitude of the carrier. The following is a simple
example that demonstrates amplitude modulation. The carrier will be a 10 second pure tone at 500Hz. The
frequency of the modulator will increase linearly over the 10 second duration of the tone from 0 to 200 Hz.
Initially, you will be able to hear the volume of the signal fluctuate, but after a couple of seconds the volume
will seem constant as new frequencies appear. Let us first create the score file. It will contain a sine wave
table, and a single note event:

score6 = pureTone : [ Score.Note 1 0.0 10.0 (Cps 500.0) 10000.0 [] ]

The orchestra will contain a single AM instrument. The carrier will simply oscillate through the sine wave
table at frequency given by the note pitch (500Hz, see the score above), and amplitude given by the modu-
lator. The modulator will oscillate through the same sine wave table at frequency ramping from 0 to 200Hz.
The modulator should be a periodic signal that varies from 0 to the maximum volume of the carrier. Since
the sine wave goes from -1 to 1, we will need to add 1 to it and half it, before multiplying it by the volume
supplied by the note event. This will be the modulating signal, and the carrier’s amplitude input. (note that
we omit the conversion functions dbToAmp and notePit, since we supply the amplitude and frequency in
their raw units in the score file)

oe8 :: OrcExp
oe8 = let modfreq = Line CR 0.0 noteDur 200.0

modamp = Osc AR 1.0 modfreq pureToneTable
modsig = (modamp + 1.0) * 0.5 * noteVol
carrier = Osc AR modsig notePit pureToneTable

in StereoOut carrier carrier

o7 = let i = (inst1, oe8)
in (hdr, [i])

tut7 = example "tut07" score6 o7

Next synthesis technique on the palette isfrequency modulation.As the name suggests, we modulate the
frequency of the carrier. Frequency modulation is much more powerful and interesting than amplitude
modulation, because instead of getting two sidebands, FM gives anumberof spectral sidebands. Let us
begin with an example of a simple FM. We will again use a single 10 second note and a 500Hz carrier.
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Remember that when we talked about amplitude modulation, the amplitude of the sidebands was dependent
upon the amplitude of the modulator. In FM, the modulator amplitude plays a much bigger role, as we will
see soon. To negate the effect of the modulator amplitude, we will keep the ratio of the modulator amplitude
and frequency constant at 1.0 (we will explain shortly why). The frequency and amplitude of the modulator
will ramp from 0 to 200 over the duration of the note. This time, though, unlike with AM, we will hear
a whole series of sidebands. The orchestra is just as before, except we modulate the frequency instead of
amplitude.

oe9 :: OrcExp
oe9 = let modfreq = Line CR 0.0 noteDur 200.0

modamp = modfreq
modsig = Osc AR modamp modfreq pureToneTable
carrier = Osc AR noteVol (notePit + modsig) pureToneTable

in StereoOut carrier carrier

o8 = let i = (inst1, oe9)
in (hdr, [i])

tut8 = example "tut08" score6 o8

The sound produced by FM is a little richer but still very bland. Let us talk now about the role of the
depthof the frequency modulation (the amplitude of the modulator). Unlike in AM, where we only had
one spectral band on each side of the carrier frequency (ie we heard C, C+M, C-M), FM gives a much
richer spectrum with many sidebands. The frequencies we hear are C, C+M, C-M, C+2M, C-2M, C+3M,
C-3M etc. The amplitudes of the sidebands are determined by themodulation indexI, which is the ratio
between the amplitude (also referred to as depth) and frequency of the modulator (I = D / M). As a rule of
thumb, the number of significant sideband pairs (at least 1number of sidebands) increases, energy is ”stolen”
from the carrier and distributed among the sidebands. Thus if I=1, we have 2 significant sideband pairs,
and the audible frequencies will be C, C+M, C-M, C+2M, C-2M, with C, the carrier, being the dominant
frequency. When I=5, we will have a much richer sound with about 6 significant sideband pairs, some
of which will actually be louder than the carrier. Let us explore the effect of the modulation index in the
following example. We will keep the frequency of the carrier and the modulator constant at 500Hz and 80
Hz respectively. The modulation index will be a stepwise function from 1 to 10, holding each value for one
second. So in effect, during the first second (I = D/M = 1), the amplitude of the modulator will be the same
as its frequency (80). During the second second (I = 2), the amplitude will be double the frequency (160),
then it will go to 240, 320, etc:

oe10 :: OrcExp
oe10 = let modind = LineSeg CR 1 1 1 [(0,2), (1,2), (0,3), (1,3), (0,4),

(1,4), (0,5), (1,5), (0,6), (1,6),
(0,7), (1,7), (0,8), (0,9), (1,9),
(0,10), (1,10)]

modamp = 80.0 * modind
modsig = Osc AR modamp 80.0 pureToneTable
carrier = Osc AR noteVol (notePit + modsig) pureToneTable

in StereoOut carrier carrier
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o9 = let i = (inst1, oe10)
in (hdr, [i])

tut9 = example "tut09" score6 o9

Notice that when the modulation index gets high enough, some of the sidebands have negative frequencies.
For example, when the modulation index is 7, there is a sideband present in the sound with a frequency C -
7M = 500 - 560 = -60Hz. The negative sidebands get reflected back into the audible spectrum but arephase
shifted180 degrees, so it is an inverse sine wave. This makes no difference when the wave is on its own,
but when we add it to its inverse, the two will cancel out. Say we set the frequency of the carrier at 100Hz
instead of 80Hz. Then at I=6, we would have present two sidebands of the same frequency - C-4M = 100Hz,
and C-6M = -100Hz. When these two are added, they would cancel each other out (if they were the same
amplitude; if not, the louder one would be attenuated by the amplitude of the softer one). The following
flexible instrument will sum up simple FM. The frequency of the modulator will be determined by the C/M
ratio supplied as p1 in the score file. The modulation index will be a linear slope going from 0 to p2 over
the duration of each note. Let us also add panning control as in additive synthesis - p3 will be the initial left
channel percentage, and p4 the final left channel percentage:

oe11 :: OrcExp
oe11 = let carfreq = pchToHz notePit

caramp = dbToAmp noteVol
modfreq = carfreq * p1
modind = Line CR 0 noteDur p2
modamp = modfreq * modind
modsig = Osc AR modamp modfreq pureToneTable
carrier = Osc AR caramp (carfreq + modsig) pureToneTable
mainamp = Osc CR 1.0 (1/noteDur) ( fromIntegral coolEnvTN)
pan = Line CR p3 noteDur p4
left = mainamp * pan * carrier
right = mainamp * (1 - pan) * carrier

in StereoOut left right

o10 = let i = (inst1, oe11)
in (hdr, [i])

Let’s write a cool tune to show off this instrument. Let’s keep it simple and play the chord progression Em
- C - G - D a few times, each time changing some of the parameters:

emchord, cchord, gchord, dchord ::
Float -> Float -> Float -> Float -> Music.T

quickChord :: [Music.Dur -> [Music.NoteAttribute] -> Music.T]
-> Float -> Float -> Float -> Float -> Music.T

quickChord ns x y z w = chord $
map (\p -> p wn [Velocity 1.4, PFields [x, y, z, w]]) ns

emchord = quickChord [e 0, g 0, b 0]
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cchord = quickChord [c 0, e 0, g 0]
gchord = quickChord [g 0, b 0, d 1]
dchord = quickChord [d 0, fs 0, a 0]

tune3 :: Music.T
tune3 = transpose (-12) $

(emchord 3.0 2.0 0.0 1.0) +:+ (cchord 3.0 5.0 1.0 0.0) +:+
(gchord 3.0 8.0 0.0 1.0) +:+ (dchord 3.0 12.0 1.0 0.0) +:+
(emchord 3.0 4.0 0.0 0.5) +:+ (cchord 5.0 4.0 0.5 1.0) +:+
(gchord 8.0 4.0 1.0 0.5) +:+ (dchord 10.0 4.0 0.5 0.0) +:+
((emchord 4.0 6.0 1.0 0.0) =:= (emchord 7.0 5.0 0.0 1.0)) +:+
((cchord 5.0 9.0 1.0 0.0) =:= (cchord 9.0 5.0 0.0 1.0)) +:+
((gchord 5.0 5.0 1.0 0.0) =:= (gchord 7.0 7.0 0.0 1.0)) +:+
((dchord 2.0 3.0 1.0 0.0) =:= (dchord 7.0 15.0 0.0 1.0))

Now we can create a score. It will contain two wave tables - one containing the sine wave, and the other
containing an amplitude envelope, which will be the table coolEnv which we have already seen before

score7 = pureTone : coolEnv : scored (changeTempo 0.5 (setInstrument "inst1" tune3))

tut10 = example "tut10" score7 o10

Note that all of the above examples of frequency modulation use a single carrier and a single modulator, and
both are oscillating through the simplest of waveforms - a sine wave. Already we have achieved some very
rich and interesting timbres using this simple technique, but the possibilities are unlimited when we start
using different carrier and modulator waveshapes and multiple carriers and/or modulators. Let us include
a couple more examples that will play the same chord progression as above with multiple carriers, and
then with multiple modulators. The reason for using multiple carriers is to obtain /em formant regions in
the spectrum of the sound. Recall that when we modulate a carrier frequency we get a spectrum with a
central peak and a number of sidebands on either side of it. Multiple carriers introduce additional peaks and
sidebands into the composite spectrum of the resulting sound. These extra peaks are called formant regions,
and are characteristic of human voice and most musical instruments

oe12 :: OrcExp
oe12 = let car1freq = pchToHz notePit

car2freq = pchToHz (notePit + 1)
car1amp = dbToAmp noteVol
car2amp = dbToAmp noteVol * 0.7
modfreq = car1freq * p1
modind = Line CR 0 noteDur p2
modamp = modfreq * modind
modsig = Osc AR modamp modfreq pureToneTable
carrier1 = Osc AR car1amp (car1freq + modsig) pureToneTable
carrier2 = Osc AR car2amp (car2freq + modsig) pureToneTable
mainamp = Osc CR 1.0 (1/noteDur) ( fromIntegral coolEnvTN)
pan = Line CR p3 noteDur p4
left = mainamp * pan * (carrier1 + carrier2)
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right = mainamp * (1 - pan) * (carrier1 + carrier2)
in StereoOut left right

o11 = let i = (inst1, oe12)
in (hdr, [i])

tut11 = example "tut11" score7 o11

In the above example, there are two formant regions - one is centered around the note pitch frequency
provided by the score file, the other an octave above. Both are modulated in the same way by the same
modulator. The sound is even richer than that obtained by simple FM. Let us now turn to multiple modulator
FM. In this case, we use a signal to modify another signal, and the modified signal will itself become a
modulator acting on the carrier. Thus the wave that wil be modulating the carrier is not a sine wave as
above, but is itself a complex waveform resulting from simple FM. The spectrum of the sound will contain
a central peak frequency, surrounded by a number of sidebands, but this time each sideband will itself also
by surrounded by a number of sidebands of its own. So in effect we are talking about ”double” modulation,
where each sideband is a central peak in its own little spectrum. Multiple modulator FM thus provides
extremely rich spectra

oe13 :: OrcExp
oe13 = let carfreq = pchToHz notePit

caramp = dbToAmp noteVol
mod1freq = carfreq * p1
mod2freq = mod1freq * 2.0
modind = Line CR 0 noteDur p2
mod1amp = mod1freq * modind
mod2amp = mod1amp * 3.0
mod1sig = Osc AR mod1amp mod1freq pureToneTable
mod2sig = Osc AR mod2amp (mod2freq + mod1sig) pureToneTable
carrier = Osc AR caramp (carfreq + mod2sig) pureToneTable
mainamp = Osc CR 1.0 (1/noteDur) ( fromIntegral coolEnvTN)
pan = Line CR p3 noteDur p4
left = mainamp * pan * carrier
right = mainamp * (1 - pan) * carrier

in StereoOut left right

o12 = let i = (inst1, oe13)
in (hdr, [i])

tut12 = example "tut12" score7 o12

In fact, the spectra produced by multiple modulator FM are so rich and complicated that even the moderate
values used as arguments in our tune produce spectra that are saturated and otherworldly. And we did this
while keeping the ratios of the two modulators frequencies and amplitudes constant; introducing dynamics
in those ratios would produce even crazier results. It is quite amazing that from three simple sine waves, the
purest of all tones, we can derive an unlimited number of timbres. Modulation synthesis is a very powerful
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tool and understanding how to use it can prove invaluable. The best way to learn how to use FM effectively
is to dabble and experiment with different ratios, formant regions, dynamic relationships betweeen ratios,
waveshapes, etc. The possibilities are limitless.

Other Capabilities Of CSound In our examples of additive and modulation synthesis we only used a
limited number of functions and routines provided us by CSound, such as Osc (oscillator), Line and LineSig
(line and line segment signal generators) etc. This tutorial intends to briefly explain the functionality of
some of the other features of CSound. Remember that the CSound manual should be the ultimate reference
when it comes to using these functions. Let us start with the two functionsBuzz andGenBuzz . These
functions will produce a set of harmonically related cosines. Thus they really implement simple additive
synthesis, except that the number of partials can be varied dynamically through the duration of the note,
rather than staying fixed as in simple additive synthesis. As an example, let us perform the tune defined
at the very beginning of the tutorial using an instrument that will play each note by starting off with the
fundamental and 70 harmonics, and ending with simply the sine wave fundamental (note that cosine and
sine waves sound the same). We will use a straight line signal going from 70 to 0 over the duration of each
note for the number of harmonics. The score used will be score1, and the orchestra will be:

oe14 :: OrcExp
oe14 = let numharms = Line CR 70 noteDur 0

signal = Buzz (dbToAmp noteVol) (pchToHz notePit)
numharms pureToneTable

in StereoOut signal signal

o13 = let i = (inst1, oe14)
in (hdr, [i])

tut13 = example "tut13" score1 o13

Let’s invert the line of the harmonics, and instead of going from 70 to 0, make it go from 0 to 70. This will
produce an interesting effect quite different from the one just heard:

oe15 :: OrcExp
oe15 = let numharms = Line CR 0 noteDur 70

signal = Buzz (dbToAmp noteVol) (pchToHz notePit)
numharms pureToneTable

in StereoOut signal signal

o14 = let i = (inst1, oe15)
in (hdr, [i])

tut14 = example "tut14" score1 o14

The Buzz expression takes the overall amplitude, fundamental frequency, number of partials, and a sine
wave table and generates a wave complex. In recent years there has been a lot of research conducted in
the area ofphysical modelling. This technique attempts to approximate the sound of real world musical
instruments through mathematical models. One of the most widespread, versatile and interesting of these
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models is theKarplus-Strong algorithmthat simulates the sound of a plucked string. The algorithm starts
off with a buffer containing a user-determined waveform. On every pass, the waveform is ”smoothed out”
and flattened by the algorithm to simulate the decay. There is a certain degree of randomness involved to
make the string sound more natural. There are six different ”smoothing methods” available in CSound,
as mentioned in the CSound module. ThePluck constructor accepts the note volume, pitch, the table
number that is used to initialize the buffer, the smoothing method used, and two parameters that depend on
the smoothing method. If zero is given as the initializing table number, the buffer starts off containing a
random waveform (white noise). This is the best table when simulating a string instrument because of the
randomness and percussive attack it produces when used with this algorithm, but you should experiment
with other waveforms as well. Here is an example of what Pluck sounds like with a white noise buffer and
the simple smoothing method. This method ignores the parameters, which we set to zero.

oe16 :: OrcExp
oe16 = let signal = Pluck (dbToAmp noteVol) (pchToHz notePit) 0

simpleSmooth 0 0
in StereoOut signal signal

o15 = let i = (inst1, oe16)
in (hdr, [i])

tut15 = example "tut15" score1 o15

The second smoothing method is thestretched smooth, which works like the simple smooth above, except
that the smoothing process is stretched by a factor determined by the first parameter. The second parameter
is ignored. The third smoothing method is thesnare drummethod. The first parameter is the ”roughness”
parameter, with 0 resulting in a sound identical to simple smooth, 0.5 being the perfect snare drum, and 1.0
being the same as simple smooth again with reversed polarity (like a graph flipped around the x-axis). The
fourth smoothing method is thestretched drummethod which combines the roughness and stretch factors -
the first parameter is the roughness, the second is the stretch. The fifth method isweighted average- it com-
bines the current sample (ie. the current pass through the buffer) with the previous one, with their weights
being determined by the parameters. This is a way to add slight reverb to the plucked sound. Finally, the
last method filters the sound so it doesn’t sound as bright. The parameters are ignored. You can modify the
instrumentoe16 easily to listen to all these effects by simply replacing the variablesimpleSmooth
by stretchSmooth, simpleDrum, stretchDrum, weightedSmooth or filterSmooth .
Here is another simple instrument example. This combines a snare drum sound with a stretched plucked
string sound. The snare drum as a constant amplitude, while we apply an amplitude envelope to the string
sound. The envelope is a spline curve with a hump in the middle, so both the attack and decay are gradual.
The drum roughness factor is 0.3, so a pitch is still discernible (with a factor of 0.5 we would get a snare
drum sound with no pitch, just a puff of white noise). The drum sound is shifted towards the left channel,
while the string sound is shifted towards the right.

midHumpTN :: Int
midHumpTN = 8
midHump :: Score.Statement
midHump = Score.Table midHumpTN 0 8192 True (cubicSpline 0.0 [(4096, 1.0),

(4096, 0.0)])
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score8 = pureTone : midHump : scored (setInstrument "inst1" tune1)

oe17 :: OrcExp
oe17 = let string = Pluck (dbToAmp noteVol) (pchToHz notePit) 0

stretchSmooth 1.5 0
drum = Pluck 6000 (pchToHz notePit) 0 simpleDrum 0.3 0
env = Osc CR 1.0 (1 / noteDur) ( fromIntegral midHumpTN)
left = (0.65 * drum) + (0.35 * env * string)
right = (0.35 * drum) + (0.65 * env * string)

in StereoOut left right

o16 = let i = (inst1, oe17)
in (hdr, [i])

tut16 = example "tut16" score8 o16

Let us now turn our attention to the effects we can achieve using adelay line. Let’s return to a simple
instrument we defined at the beginning of the tutorial -oe3 specifes an instrument containing both harmonic
and inharmonic partials, with a linearly decaying amplitude envelope. Here we take that instrument and add
a little echo to it using delay:

oe18 :: OrcExp
oe18 = let ampenv = Line CR 1.0 noteDur 0.0

sig = Osc AR (ampenv * dbToAmp noteVol) (pchToHz notePit)
( fromIntegral manySinesTN)

dline = Delay 0.1 sig
dsig1 = DelTap 0.05 dline
dsig2 = DelTap 0.1 dline
left = (0.65 * sig) + (0.35 * dsig2) + (0.5 * dsig1)
right = (0.35 * sig) + (0.65 * dsig2) + (0.5 * dsig1)

in StereoOut left right

o17 = let i = (inst1, oe18)
in (hdr, [i])

tut17 = example "tut17" score3 o17

The constructorDelay establishes adelay line. A delay line is essentially a buffer that contains the signal
to be delayed. The first argument to theDelay constructor is the length of the delay (which determines
the size of the buffer), and the second argument is the signal to be delayed. So for example, if the delay
time is 1.0 seconds, and the sampling rate is 44,100 Hz (CD quality), then the delay line will be a buffer
containing 44,100 samples of the delayed signal. The buffer is rewritten at the audio rate. OnceDelay t
sig writes t seconds of the signalsig into the buffer, the buffer can betappedusing theDelTap or the
DelTapI constructors.DelTap t dline will extract the signal fromdline at timet seconds. In the
exmaple above, we set up a delay line containing 0.1 seconds of the audio signal, then we tapped it twice
- once at 0.05 seconds and once at 0.1 seconds. The output signal is a combination of the original signal
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(left channel), the signal delayed by 0.05 seconds (middle), and the signal delayed by 0.1 seconds (right
channel). CSound provides other ways to reverberate a signal besides the delay line just demonstrated. One
such way is achieved via the Reverb constructor introduced in theCSound module. This constructor tries
to emulate natural room reverb, and takes as arguments the signal to be reverberated, and the reverb time in
seconds. This is the time it takes the signal to decay to 1/1000 its original amplitude. In this example we
output both the original and the reverberated sound.

oe19 :: OrcExp
oe19 = let ampenv = Line CR 1.0 noteDur 0.0

sig = Osc AR (ampenv * dbToAmp noteVol) (pchToHz notePit)
( fromIntegral manySinesTN)

rev = Reverb sig 0.15
left = (0.65 * sig) + (0.35 * rev)
right = (0.35 * sig) + (0.65 * rev)

in StereoOut left right

o18 = let i = (inst1, oe19)
in (hdr, [i])

tut18 = example "tut18" score5 o18

The other two reverb constructors areCombandAlpass . Each of these requires as arguments the signal
to be reverberated, the reverb time as above, and echo loop density in seconds. Here is an example of an
instrument usingComb.

oe20 :: OrcExp
oe20 = let ampenv = Line CR 1.0 noteDur 0.0

sig = Osc AR (ampenv * dbToAmp noteVol) (pchToHz notePit)
( fromIntegral manySinesTN)

rev = Comb sig 1.0 0.1
in StereoOut rev rev

o19 = let i = (inst1, oe20)
in (hdr, [i])

tut19 = example "tut19" score3 o19

Delay lines can be used for effects other than simple echo and reverberation. Once the delay line has been
established, it can be tapped at times that very at control or audio rates. This can be taken advantage of to
produce effects like chorus, flanger, or the Doppler effect. Here is an example of the flanger effect. This
instrument adds a slight flange tooe11 .

oe21 :: OrcExp
oe21 = let carfreq = pchToHz notePit

ampenv = Osc CR 1.0 (1/noteDur) ( fromIntegral coolEnvTN)
caramp = dbToAmp noteVol * ampenv
modfreq = carfreq * p1
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modind = Line CR 0 noteDur p2
modamp = modfreq * modind
modsig = Osc AR modamp modfreq pureToneTable
carrier = Osc AR caramp (carfreq + modsig) pureToneTable
dline = Delay 1.0 carrier
ftime = Osc AR 0.01 2 pureToneTable
flange = DelTapI (0.5 + ftime) dline
flanger = ampenv * flange
signal = carrier + flanger
pan = Line CR p3 noteDur p4
left = pan * signal
right = (1 - pan) * signal

in StereoOut left right

o20 = let i = (inst1, oe21)
in (hdr, [i])

tut20 = example "tut20" score7 o20

This completes our discussion of sound synthesis and Csound. For more information, please consult the
CSound manual or check out

http://mitpress.mit.edu/e-books/csound/frontpage.html

example :: Name -> Score.T -> Orchestra.T -> (Name, Score.T, Orchestra.T)
example = (,,)

test :: (Name, Score.T, Orchestra.T) -> IO ()
test = play csoundDir

play :: FilePath -> (Name, Score.T, Orchestra.T) -> IO ()
play dir (name, s, o) =

let scorename = name ++ ".sco"
orchname = name ++ ".orc"

-- wavename = name ++ ". wav"
((rate, _, channels), _) = o

in do writeFile (dir++"/"++scorename) (Score.toString s)
writeFile (dir++"/"++orchname) (Orchestra.toString o)

{-
system (" cd "++ dir ++" ; csound32 - d - W - o "

++ wavename ++ " " ++ orchname ++ " " ++ scorename
++ " ; play " ++ wavename)

-}
system ("cd "++dir++" ; csound32 -d -o stdout -s "

++ orchname ++ " " ++ scorename
++ " | play -c " ++ show channels ++

" -r " ++ show rate ++ " -t sw -")
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{-
system (" cd "++ dir ++" ; csound32 - d - o dac " -- / dev / dsp makes some chaotic noise

++ orchname ++ " " ++ scorename )
-}
{-

system ( dir ++ "/ csound . exe - W - o " ++ wavename
++ " " ++ orchname ++ " " ++ scorename )

-}
return ()

Here are some bonus instruments for your pleasure and enjoyment. The first ten instruments are lifted
from

http://wings.buffalo.edu/academic/department/AandL/music/pub/accci/
01/01_01_1b.txt.html

The tutorial explains how to add echo/reverb and other effects to the instruments if you need to. This
instrument sounds like an electric piano and is really simple - pianoEnv sets the amplitude envelope, and
the sound waveform is just a series of 10 harmonics. To make the sound brighter, increase the weight of the
upper harmonics.

piano, reedy, reedy2, flute
:: (Name, Score.T, Orchestra.T)

pianoOrc, reedyOrc, reedy2Orc, fluteOrc
:: (( Int , Int , Int ), [( Int , OrcExp)])

pianoScore, reedyScore, fluteScore :: Score.T
pianoEnv, reedyEnv, fluteEnv :: Score.Statement
pianoWave, reedyWave, fluteWave :: Score.Statement

pianoEnvTN, pianoWaveTN :: Int
pianoEnvTN = 10
pianoWaveTN = 11
pianoEnv = Score.Table pianoEnvTN 0 1024 True (lineSeg1 0 [(20, 0.99),

(380, 0.4), (400, 0.2), (224, 0)])
pianoWave = Score.Table pianoWaveTN 0 1024 True (compSine1 [0.158, 0.316,

1.0, 1.0, 0.282, 0.112, 0.063, 0.079, 0.126, 0.071])

pianoScore = pianoEnv : pianoWave : scored (setInstrument "inst1" tune1)

pianoOE :: OrcExp
pianoOE = let ampenv = Osc CR (dbToAmp noteVol) (1/noteDur)

( fromIntegral pianoEnvTN)
signal = Osc AR ampenv (pchToHz notePit)

( fromIntegral pianoWaveTN)
in StereoOut signal signal
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pianoOrc = let i = (inst1, pianoOE)
in (hdr, [i])

piano = example "piano" pianoScore pianoOrc

Here is another instrument with a reedy sound to it

reedyEnvTN, reedyWaveTN :: Int
reedyEnvTN = 12
reedyWaveTN = 13
reedyEnv = Score.Table reedyEnvTN 0 1024 True (lineSeg1 0 [(172, 1.0),

(170, 0.8), (170, 0.6), (170, 0.7), (170, 0.6), (172,0)])
reedyWave = Score.Table reedyWaveTN 0 1024 True (compSine1 [0.4, 0.3,

0.35, 0.5, 0.1, 0.2, 0.15, 0.0, 0.02, 0.05, 0.03])

reedyScore = reedyEnv : reedyWave : scored (setInstrument "inst1" tune1)

reedyOE :: OrcExp
reedyOE = let ampenv = Osc CR (dbToAmp noteVol) (1/noteDur)

( fromIntegral reedyEnvTN)
signal = Osc AR ampenv (pchToHz notePit)

( fromIntegral reedyWaveTN)
in StereoOut signal signal

reedyOrc = let i = (inst1, reedyOE)
in (hdr, [i])

reedy = example "reedy" reedyScore reedyOrc

We can use a little trick to make it sound like several reeds playing by adding three signals that are
slightly out of tune:

reedy2OE :: OrcExp
reedy2OE = let ampenv = Osc CR (dbToAmp noteVol) (1/noteDur)

( fromIntegral reedyEnvTN)
freq = pchToHz notePit
a1 = Osc AR ampenv freq ( fromIntegral reedyWaveTN)
a2 = Osc AR (ampenv * 0.44) (freq + (0.023 * freq))

( fromIntegral reedyWaveTN)
a3 = Osc AR (ampenv * 0.26) (freq + (0.019 * freq))

( fromIntegral reedyWaveTN)
left = (a1 * 0.5) + (a2 * 0.35) + (a3 * 0.65)
right = (a1 * 0.5) + (a2 * 0.65) + (a3 * 0.35)

in StereoOut left right

reedy2Orc = let i = (inst1, reedy2OE)
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in (hdr, [i])

reedy2 = example "reedy2" reedyScore reedy2Orc

This instrument tries to emulate a flute sound by introducing random variations to the amplitude enve-
lope. The score file passes in two parameters - the first one is the depth of the random tremolo in percent of
total amplitude. The tremolo is implemented using the RandomI constructor, which generates a signal that
interpolates between 2 random numbers over a certain number of samples that is specified by teh second
parameter.

fluteTune :: Music.T

fluteTune = Music.line
( map ( flip id [Velocity 1.6, PFields [30, 40]])

[c 1 hn, e 1 hn, g 1 hn, c 2 hn,
a 1 hn, c 2 qn, a 1 qn, g 1 dhn]

++ [qnr])

fluteEnvTN, fluteWaveTN :: Int
fluteEnvTN = 14
fluteWaveTN = 15
fluteEnv = Score.Table fluteEnvTN 0 1024 True (lineSeg1 0 [(100, 0.8),

(200, 0.9), (100, 0.7), (300, 0.2), (324, 0.0)])
fluteWave = Score.Table fluteWaveTN 0 1024 True (compSine1 [1.0, 0.4,

0.2, 0.1, 0.1, 0.05])

fluteScore = fluteEnv : fluteWave : scored (setInstrument "inst1" fluteTune)

fluteOE :: OrcExp
fluteOE = let vol = dbToAmp noteVol

rand = RandomI AR ((vol/100) * p1) p2
ampenv = OscI AR (rand + vol) (1 / noteDur)

( fromIntegral fluteEnvTN)
signal = OscI AR ampenv (pchToHz notePit)

( fromIntegral fluteWaveTN)
in StereoOut signal signal

fluteOrc = let i = (inst1, fluteOE)
in (hdr, [i])

flute = example "flute" fluteScore fluteOrc

6.3 MML

module Haskore.Interface.MML where
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import Data. Ratio ((%))
import qualified Data. List as List
import Control. Monad.State

import qualified Haskore.Basic.Pitch as Pitch
import qualified Haskore.Music as Music

I found some music notated in a language called MML. The description consists of strings.

• l n determines the duration of subsequent notes:l1 - whole note,l2 - half note,l4 - quarter note
and so on.

• > switch to the octave above

• < switch to the octave below

• Lower case lettera - g play the note of the corresponding pitch class.

• # (sharp) or- (flat) may follow a note name in order to increase or decrease, respectively, the pitch of
the note by a semitone.

• An additional figure for the note duration may follow.

• p is pause.

See moduleKantate147 for an example.

type Accum = (Music.Dur, Pitch.Octave)

barToMusic :: String -> Accum -> ([Music.T], Accum)
barToMusic [] accum = ([], accum)
barToMusic (c:cs) (dur, oct) =

let charToDur dc = 1 % read (dc:[])
prependAtom atom adur (ms, newAccum) =

(atom adur : ms, newAccum)
procNote ndur pitch c0s =

let mkNote c1s = prependAtom ( flip (Music.note (oct, pitch)) [])
ndur (barToMusic c1s (dur, oct))

in case c0s of
’#’:c1s -> procNote ndur ( succ pitch) c1s
’-’:c1s -> procNote ndur ( pred pitch) c1s
c1 :c1s -> if ’0’<=c1 && c1<=’9’

then procNote (charToDur c1) pitch c1s
else mkNote c0s

[] -> mkNote c0s
in case c of

’c’ -> procNote dur Pitch.C cs
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’d’ -> procNote dur Pitch.D cs
’e’ -> procNote dur Pitch.E cs
’f’ -> procNote dur Pitch.F cs
’g’ -> procNote dur Pitch.G cs
’a’ -> procNote dur Pitch.A cs
’b’ -> procNote dur Pitch.B cs
’p’ -> let (c1:c1s) = cs

in prependAtom Music.rest (charToDur c1)
(barToMusic c1s (dur, oct))

’<’ -> barToMusic cs (dur, oct-1)
’>’ -> barToMusic cs (dur, oct+1)
’l’ -> let (c1:c1s) = cs

in barToMusic c1s (charToDur c1, oct)
_ -> error ("unexpected character ’"++[c]++"’ in Haskore.Interface.MML description")

toMusicState :: String -> State Accum [Music.T]
toMusicState s = State (barToMusic s)

toMusic :: Pitch.Octave -> String -> Music.T
toMusic oct s = Music.line (evalState (toMusicState s) (0, oct))

7 Processing and Analysis

7.1 Optimization

This module provides functions that simplify the structure of aMusic.T according to the rules proven in
Section4.1

module Haskore.Process.Optimization where

import qualified Media
import qualified Media.Temporal
import qualified Haskore.Music as Music
import Data. Maybe ( catMaybes , fromMaybe , mapMaybe)

Music.T objects that come out ofReadMidi.toMusic almost always contain redundancies, like
rests of zero duration and redundant instrument specifications. The functionOptimization.all reduces
the redundancy to make aMusic.T file less cluttered and more efficient to use.

all , rest, duration, tempo, transpose , instrument, volume ::
Music.T -> Music.T

all = tempo . transpose . volume . instrument . singleton . rest

Remove rests of zero duration.
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rest = Music.mapList
( curry id )
( curry id )
( filter (/= Music.rest 0))
( filter (/= Music.rest 0))

Remove any atom of zero duration. This is not really an optimization but a hack to get rid of MIDI
NoteOn and NoteOff events at the same time point.

duration = fromMaybe (Music.rest 0) . Music.foldList
(\d -> if d == 0

then const Nothing
else Just . Music.atom d)

(fmap . Music.control)
( Just . Media.serial . catMaybes )
( Just . Media.parallel . catMaybes )

The control structures for tempo, transposition and change of instruments can be handled very similar
using the following routines. The functionmergeControl’ checks if nested controllers are of the same
kind. If they are they are merged to one. The function would be much simpler if it would be implemented
for specific constructors, but we want to stay independent from the particular data structure, which is already
quite complex.

mergeControl’ :: (Music.Control -> Maybe a)
-> (a -> Music.T -> Music.T) -> (a -> a -> a) -> Music.T -> Music.T

mergeControl’ extract control merge =
let fcSub c m = fmap ( flip (,) m) (extract c)

fc’ c0 m0 x0 =
maybe (Music.control c0 m0)

(\(x1,m1) -> control (merge x0 x1) m1)
(Music.foldListFlat ( const ( const Nothing ))

fcSub ( const Nothing ) ( const Nothing ) m0)
fc c m = maybe (Music.control c m)

(fc’ c m)
(extract c)

in Music.foldList
Music.atom fc Music.line Music.chord

The following function collects neighboured controllers into groups, extracts controllers of a specific
type and prepends a controller to the list of neighboured controllers, which has the total effect of the ex-
tracted controllers. This change of ordering is always possible because in the current set of controllers two
neighboured controllers of different type commutes.

mergeControl :: Eq a => (Music.Control -> Maybe a)
-> (a -> Music.T -> Music.T) -> (a -> a -> a) -> Music.T -> Music.T

mergeControl extract control merge =
let collectControl =
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Music.foldListFlat
(\d n -> ([], Music.atom d n))
(\c m -> let cm = collectControl m

in (c : fst cm, snd cm))
((,) [] . Music.line . map recurse)
((,) [] . Music.chord . map recurse)

recurse m =
let cm = collectControl m

xs = mapMaybe extract ( fst cm)
x = foldl1 merge xs
cs’ = filter ((==) Nothing . extract) ( fst cm)
collectedCtrl = if null xs then id else control x

in collectedCtrl ( foldr id ( snd cm) ( map Music.control cs’))
in recurse

The functionremoveNeutral removes controllers that have no effect.

removeNeutral :: (Music.Control -> Bool ) -> Music.T -> Music.T
removeNeutral isNeutral =

let fc c m = if isNeutral c
then m
else Music.control c m

in Music.foldList Music.atom fc Music.line Music.chord

Remove redundantTempos.

tempo =
let maybeTempo (Music.Tempo t) = Just t

maybeTempo _ = Nothing
in removeNeutral (== Music.Tempo 1) .

mergeControl maybeTempo Music.changeTempo (*)

Remove redundantTranspose s.

transpose =
let maybeTranspose (Music.Transpose t) = Just t

maybeTranspose _ = Nothing
in removeNeutral (== Music.Transpose 0) .

mergeControl maybeTranspose Music. transpose (+)

Remove unnecessaryInstrument s. A more sophisticated algorithm could find more Instrument
change redundancies, but since it is planned to turn instruments into a note attribute (rather than a global
control) this is not so important for now.

instrument =
let maybeInstrument (Music.Instrument t) = Just t

maybeInstrument _ = Nothing
in mergeControl maybeInstrument Music.setInstrument ( flip const )
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Change repeated Volume Note Attributes to Phrase Attributes.

volume = id

{-
Is it really necessary to have different possibilities for setting the volume ?
It is wrong to merge ( Phrase p1 ( Phrase p2 m)) to ( Phrase p1 m) if p1 == p2
because the Loudness should multiply rather than replace the old one .

volume m1 = let ( m2, changed ) = volume ’ m1
in if changed then volume m2

else m2
volume ’ (( m1 +:+ m2) +:+ m3) = ( m1 +:+ m2 +:+ m3, True )
volume ’ (( m1 =:= m2) =:= m3) = ( m1 =:= m2 =:= m3, True )
volume ’ ( Phrase p1 ( Phrase p2 m)) | p1 == p2 = ( Phrase p1 m, True )

| otherwise = ( Phrase ( p1 ++ p2) m, True )
volume ’ ( Note p1 d1 [ Volume v1 ] +:+ Note p2 d2 [ Volume v2 ]) | v1 == v2 =

( Phrase [ Dyn ( Loudness v1 )] ( Note p1 d1 [] +:+ Note p2 d2 []), True )
volume ’ ( Note p1 d1 [ Volume v1 ] =:= Note p2 d2 [ Volume v2 ]) | v1 == v2 =

( Phrase [ Dyn ( Loudness v1 )] ( Note p1 d1 [] =:= Note p2 d2 []), True )
volume ’ ( Note p1 d1 [ Volume v1 ] +:+ Note p2 d2 [ Volume v2 ] +:+ x) | v1 == v2 =

(( Phrase [ Dyn ( Loudness v1 )] ( Note p1 d1 [] +:+ Note p2 d2 [])) +:+ x, True )
volume ’ ( Note p1 d1 [ Volume v1 ] =:= Note p2 d2 [ Volume v2 ] =:= x) | v1 == v2 =

(( Phrase [ Dyn ( Loudness v1 )] ( Note p1 d1 [] =:= Note p2 d2 [])) =:= x, True )
volume ’ ( Phrase p1 m1 +:+ Phrase p2 m2) | p1 == p2 = ( Phrase p1 ( m1 +:+ m2), True )
volume ’ ( Phrase p1 m1 =:= Phrase p2 m2) | p1 == p2 = ( Phrase p1 ( m1 =:= m2), True )
volume ’ ( Phrase p1 m1 +:+ Phrase p2 m2 +:+ x) | p1 == p2 =

( Phrase p1 ( m1 +:+ m2 +:+ x), True )
volume ’ ( Phrase p1 m1 =:= Phrase p2 m2 =:= x) | p1 == p2 =

( Phrase p1 ( m1 =:= m2 =:= x), True )
volume ’ ( Phrase phr@[ Dyn ( Loudness l )] m +:+ Note p d [ Volume v]) | l == v =

( Phrase phr ( m +:+ Note p d []), True )
volume ’ ( Phrase phr@[ Dyn ( Loudness l )] m =:= Note p d [ Volume v]) | l == v =

( Phrase phr ( m =:= Note p d []), True )
volume ’ ( Phrase phr@[ Dyn ( Loudness l )] m +:+ Note p d [ Volume v] +:+ x) | l == v =

( Phrase phr ( m +:+ Note p d []) +:+ x, True )
volume ’ ( Phrase phr@[ Dyn ( Loudness l )] m =:= Note p d [ Volume v] =:= x) | l == v =

( Phrase phr ( m =:= Note p d []) =:= x, True )
volume ’ ( Note p d [ Volume v] +:+ Phrase phr@[ Dyn ( Loudness l )] m) | l == v =

( Phrase phr ( Note p d [] +:+ m), True )
volume ’ ( Note p d [ Volume v] =:= Phrase phr@[ Dyn ( Loudness l )] m) | l == v =

( Phrase phr ( Note p d [] =:= m), True )
volume ’ ( Note p d [ Volume v] +:+ Phrase phr@[ Dyn ( Loudness l )] m +:+ x) | l == v =

(( Phrase phr ( Note p d [] +:+ m)) +:+ x, True )
volume ’ ( Note p d [ Volume v] =:= Phrase phr@[ Dyn ( Loudness l )] m =:= x) | l == v =

(( Phrase phr ( Note p d [] =:= m)) =:= x, True )
volume ’ ( Rest r +:+ Note p d [ Volume v]) =
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( Phrase [ Dyn ( Loudness v)] ( Rest r +:+ Note p d []), True )
volume ’ ( Rest r =:= Note p d [ Volume v]) =

( Phrase [ Dyn ( Loudness v)] ( Rest r =:= Note p d []), True )
volume ’ ( Note p d [ Volume v] +:+ Rest r ) =

( Phrase [ Dyn ( Loudness v)] ( Note p d [] +:+ Rest r ), True )
volume ’ ( Note p d [ Volume v] =:= Rest r ) =

( Phrase [ Dyn ( Loudness v)] ( Note p d [] =:= Rest r ), True )
volume ’ ( Rest r +:+ Phrase p m) = ( Phrase p ( Rest r +:+ m), True )
volume ’ ( Rest r =:= Phrase p m) = ( Phrase p ( Rest r =:= m), True )
volume ’ ( Phrase p m +:+ Rest r ) = ( Phrase p ( m +:+ Rest r ), True )
volume ’ ( Phrase p m =:= Rest r ) = ( Phrase p ( m =:= Rest r ), True )
volume ’ ( m1 +:+ m2) = let ( m3, c3 ) = volume ’ m1

( m4, c4 ) = volume ’ m2
in ( m3 +:+ m4, c3 || c4 )

volume ’ ( m1 =:= m2) = let ( m3, c3 ) = volume ’ m1
( m4, c4 ) = volume ’ m2

in ( m3 =:= m4, c3 || c4 )
volume ’ ( Tempo a m) = ( Tempo a $ volume m, False )
volume ’ ( Transpose a m) = ( Transpose a $ volume m, False )
volume ’ ( Instrument a m) = ( Instrument a $ volume m, False )
volume ’ ( Player a m) = ( Player a $ volume m, False )
volume ’ ( Phrase a m) = ( Phrase a $ volume m, False )
volume ’ x = ( x, False )
-}

EliminateSerial andParallel composition if they contain only one member. This can be done
very general forMedia.T , but in this case it doesn’t descend intoControl . Thus we have also a version
which works satisfyingly onMusic.T .

singletonMedia :: (Media.Temporal.Class a, Media.Class media) =>
media a -> media a

singletonMedia =
Media.foldList Media.prim

(\ms -> case ms of {[x] -> x; _ -> Media.serial ms})
(\ms -> case ms of {[x] -> x; _ -> Media.parallel ms})

singleton :: Music.T -> Music.T
singleton =

Music.foldList Music.atom Music.control
(\ms -> case ms of {[x] -> x; _ -> Music.line ms})
(\ms -> case ms of {[x] -> x; _ -> Music.chord ms})
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7.2 Structure Analysis

This module contains a function which builds a hierarchical music object from a serial one. This is achieved
by searching for long common infixes. A common infix is replaced by a single object at each occurence.

This module proofs the sophistication of the separation between general arrangement of some objects
as provided by the moduleMedia and the special needs of music provided by the moduleMusic . It’s
possible to formulate these algorithms without the knowledge of Music and we can insert the typeTag
to distinguish between media primitives and macro calls. The only drawback is that it is not possible to
descend into controlled sub-structures, like Tempo and Trans.

module Media.ContextFreeGrammar where

import Data. List ( sort , tails , isPrefixOf , maximumBy, findIndex )
import Data. Maybe ( fromJust )
import Data.FiniteMap

import Control. Monad.State

import Media (prim, serial1, parallel1)
import qualified Media
import qualified Media. List

Condense all common infixes down to length ’thres’. The infixes are replaced by some marks using
the constructor Left. They can be considered as macros or as non-terminals in a grammar. The normal
primitives are preserved with constructor Right. We end up with a context-free grammar of the media.

data Tag key prim =
Prim prim

| Call key
| CallMulti Int key
deriving ( Eq, Ord , Show)

type TagMedia key prim = Media. List .T (Tag key prim)

-- True is for cyclic infixes
type T key prim = [(key, TagMedia key prim)]

fromMedia :: ( Ord key, Ord prim) =>
[key] -> Int -> Media. List .T prim -> T key prim

fromMedia (key:keys) thres m =
let action = whileM (>= thres) ( map (State . condense) keys)

-- action = sequence ( take 1 ( map ( State . condense ) keys ))
in reverse $ execState action [(key, fmap Prim m)]

fromMedia _ _ _ =
error ("No key given."++

" Please provide an infinite or at least huge number of macro names.")
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The inverse offromMedia : Expand all macros. Cyclic macro references shouldn’t be a problem if it is
possible to resolve the dependencies. We manage the grammar in the dictionarydict . Now a naive way for
expanding the macros is to recurse into each macro call manually using lookups todict . This would imply
that we need new memory for each expansion of the same macro. We have chosen a different approach: We
mapdict to a new dictionarydict’ which contains the expanded versions of each Media. For expansion
we don’t use repeated lookups todict but we use only one lookup todict’ – which contains the fully
expanded version of the considered Media. This method is rather the same as if you write Haskell values
that invokes each other.

The functionexpand computes the expansion for each key and the functiontoMedia computes the
expansion of the first macro. ThustoMedia quite invertsfromMedia .

toMedia :: ( Show key, Ord key, Ord prim) =>
T key prim -> Media. List .T prim

toMedia = snd . head . expand

expand :: ( Show key, Ord key, Ord prim) =>
T key prim -> [(key, Media. List .T prim)]

expand grammar =
let notFound key = error ("The non-terminal ’" ++ show key ++ "’ is unknown.")

dict = listToFM grammar
dict’ = mapFM (\_ -> Media.foldList expandSub serial1 parallel1) dict
expandSub (Prim p) = prim p
expandSub (Call key) =

lookupWithDefaultFM dict’ (notFound key) key
expandSub (CallMulti n key) =

serial1 ( replicate n (lookupWithDefaultFM dict’ (notFound key) key))
in map ( fromJust . lookupFM (mapFM ( curry id ) dict’) . fst ) grammar

Do monadic actions until the conditionp fails. This is implemented for State Monads, because in plain
Monads one could not reset the state and thus the state wouldn’t be that after the last successful (with respect
to the predicatep) action.

whileM :: (MonadState s m) => (a -> Bool ) -> [m a] -> m [a]
whileM _ [] = return []
whileM p (m:ms) =

do s <- get
x <- m
if p x then whileM p ms >>= return . (x:)

else put s -- reset to the old state
>> return []

Find the longest common infix over all parts of the music and replace it in all of them.

condense :: ( Ord key, Ord prim) =>
key

-> T key prim
-> ( Int , T key prim)
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condense key x =
let getSerials = Media.foldListFlat

( const [])
(\xs -> xs : concatMap getSerials xs)
(\xs -> concatMap getSerials xs)

infx = smallestCycle (maximumCommonInfixMulti length
( concatMap (getSerials . snd ) x))

absorbSingleton _ [m] = m
absorbSingleton collect ms = collect ms
replaceRec = Media.foldList prim

(absorbSingleton serial1 . map joinTag . replaceInfix key infx)
(absorbSingleton parallel1)

in ( length infx, (key, serial1 infx) : map (\(k, ms) -> (k, replaceRec ms)) x)

joinTag :: Tag key (TagMedia key prim) -> TagMedia key prim
joinTag (Prim m) = m
joinTag (Call k) = prim (Call k)
joinTag (CallMulti n k) = prim (CallMulti n k)

Replace all occurences of the infix by its key. Collect accumulated occurences in oneCallMulti .

replaceInfix :: ( Eq a, Eq b) =>
a

-> [b]
-> [b]
-> [Tag a b]

replaceInfix key infx sequ =
let recurse [] = []

recurse xa@(x:xs) =
let pref = commonPrefix ( cycle infx) xa

(num, r) = divMod ( length pref) ( length infx)
len = length pref - r

in if num == 0
then Prim x : recurse xs
else (( if num == 1 then Call key else CallMulti num key)

: recurse ( drop len xa))
in recurse sequ

A common infix indicates a loop if its occurences overlap. We can detect this by checking if there is a
suffix of our list which is also a prefix of this list.

isCyclic :: Eq a => [a] -> Bool
isCyclic x = any ( flip isPrefixOf x) ( init ( tail ( tails x)))

Find the shortest listy , wherex is a prefix ofcycle y . If x has no loop, thenx == y .

smallestCycle :: Eq a => [a] -> [a]
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smallestCycle x =
take (1 + fromJust ( findIndex ( flip isPrefixOf x) ( tail ( tails x)))) x

Finding common infixes is a prominent application of suffix trees. But since I don’t have an implemen-
tation of suffix trees I’ll stick to a sorted list of suffices.

maximumCommonInfix :: ( Ord a, Ord b) => ([a] -> b) -> [a] -> [a]
maximumCommonInfix mag x =

let xSort = sort ( tails x)
commonInfixes = zipWith commonPrefix xSort ( tail xSort)

in maximumByMag mag commonInfixes

Find common infixes across multiple strings. This would be an application for generalized suffix trees.

maximumCommonInfixMulti :: ( Ord a, Ord b) => ([a] -> b) -> [[a]] -> [a]
maximumCommonInfixMulti mag x =

let xSort = sort ( concatMap tails x)
commonInfixes = zipWith commonPrefix xSort ( tail xSort)

in maximumByMag mag commonInfixes

Find the maximum element with respect to the magnitude function ’mag’.

maximumByMag :: Ord b => (a -> b) -> [a] -> a
maximumByMag mag = maximumBy (\x y -> compare (mag x) (mag y))

Find the longest common prefix.

commonPrefix :: Eq a => [a] -> [a] -> [a]
commonPrefix (x:xs) (y:ys) =

if x == y then x : commonPrefix xs ys
else []

commonPrefix _ _ = []

7.3 Markov Chains

Markov chains can be used to recompose a list of elements respecting the fact that the probability of a certain
element depends on preceding elements in the list. We will use this for recomposition of music streams as
demonstrated in moduleKantate147 .

module Haskore.General.MarkovChain where

import Data.FiniteMap (FiniteMap, lookupWithDefaultFM, addListToFM_C, emptyFM)
import System . Random ( RandomGen, randomR)
import Control. Monad.State

Creates a chain of characters according to the probabilities of possible successor
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walk :: ( Ord a, RandomGen g) => Int -> [a] -> Int -> g -> [a]
walk n -- size of look - ahead buffer

dict -- text to walk through randomly
start -- index to start the random walk within ’ dict ’
g -- random generator state

= let fm = createMap n dict
{- This is the main function of this program .

It is quite involved .
If you want to understand it ,
imagine that the list ’ y ’ completely exists
before the computation . -}

y = take n ( drop start dict) ++
-- run them on the initial random generator state
evalState

-- this turns the list of possible successors
-- into an action that generate a list
-- of randomly chosen items
( mapM randomItem

-- lookup all possible successors of each infix
( map (lookupWithDefaultFM fm

( error ("key is not contained in dictionary")))
-- list all infixes of length n
( map ( take n) ( iterate tail y)))) g

in y

chose a random item from a list

randomItem :: ( RandomGen g) => [a] -> State g a
randomItem x = fmap (x!!) (State ( randomR (0, length x - 1)))

create a map that lists for each string all possible successors

createMap :: ( Ord a) => Int -> [a] -> FiniteMap [a] [a]
createMap n x =

let xc = cycle x
-- list of the map keys
sufxs = map ( take n) ( iterate tail xc)
-- list of the map images , i . e. single element lists
imgxs = map (:[]) ( drop n xc)
mapList = take ( length x) ( zip sufxs imgxs)

in addListToFM_C (++) emptyFM mapList

7.4 Pretty printing Music

This module aims at formatting (pretty printing) of musical objects with Haskell syntax. This is particularly
useful for converting algorithmically generated music into Haskell code that can be edited and furtherly
developed.
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module Haskore.Music.Format where

import qualified Language.Haskell.Pretty as Pretty
import qualified Language.Haskell.Syntax as Syntax
import qualified Language.Haskell.Parser as Parser

import qualified Media
import qualified Haskore.Music as Music
import Media.ContextFreeGrammar as Grammar
import Data.FiniteMap (FiniteMap, listToFM, lookupFM)
import qualified Data. Char as Char
import Data. List ( intersperse )

Format a grammar as computed with the moduleMedia.ContextFreeGrammar .

prettyGrammarMedia :: ( Show prim) => Grammar.T String prim -> String
prettyGrammarMedia = prettyGrammar prim

prettyGrammarMusic :: Grammar.T String Music.Primitive -> String
prettyGrammarMusic = prettyGrammar primMusic

prettyGrammar :: ( Int -> prim -> ShowS) -> Grammar.T String prim -> String
prettyGrammar primSyntax g =

let text = unlines ( map ( flip id "" . bind primSyntax) g)
Parser.ParseOk (Syntax.HsModule _ _ _ _ code) =

Parser.parseModule text
in unlines ( map Pretty.prettyPrint code) -- show code

Format aMedia object that contains references to other media objects.

bind :: ( Int -> prim -> ShowS) -> ( String , Grammar.TagMedia String prim) -> ShowS
bind primSyntax (key, ms) =

showString key . showString " = " . tagMedia 0 primSyntax ms

tagMedia :: Int -> ( Int -> prim -> ShowS) -> Grammar.TagMedia String prim -> ShowS
tagMedia prec primSyntax m =

let primSyntax’ _ (Grammar.Call s) = showString s
primSyntax’ prec’ (Grammar.CallMulti n s) =

enclose prec’ 0
( showString "serial $ replicate " . showsPrec 10 n .

showString " " . showString s)
primSyntax’ prec’ (Grammar.Prim p) = primSyntax prec’ p

in Media.foldList ( flip primSyntax’)
(listFunc "serial")
(listFunc "parallel") m prec

list :: [ Int -> ShowS] -> ShowS
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list = foldr (.) ( showString "]") . ( showString "[" :) .
intersperse ( showString ",") . map ( flip id 0)

listFunc :: String -> [ Int -> ShowS] -> Int -> ShowS
listFunc func ps prec =

enclose prec 10 ( showString func . showString " " . list ps)

prim :: ( Show p) => Int -> p -> ShowS
prim prec p = enclose prec 10 ( showString "prim " . showsPrec 10 p)

dummySrcLoc :: Syntax.SrcLoc
dummySrcLoc = Syntax.SrcLoc {Syntax.srcFilename = "",

Syntax.srcLine = 0,
Syntax.srcColumn = 0}

Of course we also want to format plain music, that is music without tags.

prettyMusic :: Music.T -> String
prettyMusic m = prettyExp (music 0 m "")

prettyExp :: String -> String
prettyExp text =

let Parser.ParseOk (Syntax.HsModule _ _ _ _
[Syntax.HsPatBind _ _ (Syntax.HsUnGuardedRhs code) _]) =

Parser.parseModule ("dummy = "++text)
in Pretty.prettyPrint code

Now we go to define functions that handle the particular primitives of music. Note thatControl
information andNoteAttribute s are printed as atoms.

music :: Int -> Music.T -> ShowS
music prec m =

Media.foldList
( flip primMusic)
(listFunc "line")
(listFunc "chord") m prec

primMusic :: Int -> Music.Primitive -> ShowS
primMusic prec (Music.Atom d at) = atom prec d at
primMusic prec (Music.Control ctrl m) = control prec ctrl m

atom :: Int -> Music.Dur -> Music.Atom -> ShowS
atom prec d (Music.Note (o,pc) nas) =

enclose prec 10 ( showString ( map Char . toLower ( show pc)) .
showString " " . showsPrec 10 o . showString " " . durSyntax id "n" d .
showString " " . showsPrec 10 nas)

atom prec d Music.Rest =
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durSyntax (\dStr -> enclose prec 10 ( showString "rest " . dStr)) "nr" d

control :: Int -> Music.Control -> Music.T -> ShowS
control prec c m =

let controlSyntax name arg =
enclose prec 10

( showString name . showString " " . arg . showString " " . music 10 m)
in case c of

Music.Tempo d -> controlSyntax "changeTempo" ( showsPrec 10 d)
Music.Transpose p -> controlSyntax "transpose" ( showsPrec 10 p)
Music.Instrument i -> controlSyntax "setInstrument" ( showsPrec 10 i)
Music.Player p -> controlSyntax "setPlayer" ( showsPrec 10 p)
Music.Phrase p -> controlSyntax "phrase" ( showsPrec 10 p)

Note that the call toshow can’t be moved from thecontrolSyntax calls in control to
controlSyntax because that provokes a compiler problem, namely

Mismatched contexts
When matching the contexts of the signatures for

controlSyntax :: forall a.
( Show a) =>
String -> a -> Music.T -> Language.Haskell.Syntax.HsExp

control :: Music.Primitive -> Language.Haskell.Syntax.HsExp
The signature contexts in a mutually recursive group should all be identical
When generalising the type (s) for controlSyntax, control

durDict :: FiniteMap Music.Dur String
durDict =

let durs = zip ( iterate (/2) 2)
["b", "w", "h", "q", "e", "s", "t", "sf"]

ddurs = map (\(d,s) -> (3/2*d, "d" ++s)) durs
dddurs = map (\(d,s) -> (7/4*d, "dd"++s)) durs

in listToFM (durs ++ ddurs ++ dddurs)

durSyntax :: ( ShowS -> ShowS) -> String -> Music.Dur -> ShowS
durSyntax showRatio suffix d =

maybe (showRatio ( showsPrec 10 d))
(\s -> showString (s++suffix)) (lookupFM durDict d)

Enclose an expression in parentheses if the inner operator has at most the precedence of the outer oper-
ator.

enclose :: Int -> Int -> ShowS -> ShowS
enclose outerPrec innerPrec expr =

if outerPrec >= innerPrec
then showString "(" . expr . showString ")"
else expr
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8 Related and Future Research

Many proposals have been put forth for programming languages targeted for computer music composition
[?, ?, ?, ?, ?, ?, ?, ?], so many in fact that it would be difficult to describe them all here. None of them
(perhaps surprisingly) are based on apurefunctional language, with one exception: the recent work done by
Orlarey et al. at GRAME [?], which uses a pure lambda calculus approach to music description, and bears
some resemblance to our effort. There are some other related approaches based on variants of Lisp, most
notably Dannenberg’sFuguelanguage [?], in which operators similar to ours can be found but where the
emphasis is more on instrument synthesis rather than note-oriented composition. Fugue also highlights the
utility of lazy evaluation in certain contexts, but extra effort is needed to make this work in Lisp, whereas
in a non-strict language such as Haskell it essentially comes “for free”. Other efforts based on Lisp utilize
Lisp primarily as a convenient vehicle for “embedded language design,” and the applicative nature of Lisp
is not exploited well (for example, in Common Music the user will find a large number of macros which are
difficult if not impossible to use in a functional style).

We are not aware of any computer music language that has been shown to exhibit the kinds of algebraic
properties that we have demonstrated for Haskore. Indeed, none of the languages that we have investigated
make a useful distinction between music and performance, a property that we find especially attractive
about the Haskore design. On the other hand, Balaban describes an abstract notion (apparently not yet a
programming language) of “music structure,” and provides various operators that look similar to ours [?].
In addition, she describes an operation calledflattenthat resembles our literal interpretationperform . It
would be interesting to translate her ideas into Haskell; the match would likely be good.

Perhaps surprisingly, the work that we find most closely related to ours is not about music at all: it
is Henderson’sfunctional geometry, a functional language approach to generating computer graphics [?].
There we find a structure that is in spirit very similar to ours: most importantly, a clear distinction between
objectdescriptionand interpretation(which in this paper we have been calling musical objects and their
performance). A similar structure can be found in Arya’sfunctional animationwork [?].

There are many interesting avenues to pursue with this research. On the theoretical side, we need a
deeper investigation of the algebraic structure of music, and would like to express certain modern theories of
music in Haskore. The possibility of expressing other scale types instead of the thus far unstated assumption
of standard equal temperament scales is another area of investigation. On the practical side, the potential of
a graphical interface to Haskore is appealing. We are also interested in extending the methodology to sound
synthesis. Our primary goal currently, however, is to continue using Haskore as a vehicle for interesting
algorithmic composition (for example, see [?]).

A Convenient Functions for Getting Started With Haskore

module Haskore.Interface.MIDI.Render where

import System ( system )

import qualified Haskore.Music as Music
import qualified Haskore.Music.Performance as Performance
import qualified Haskore.Music.PerformanceContext as Context
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import qualified Haskore.Music.Player as Player

import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.Interface.MIDI.UserPatchMap as UserPatchMap
import qualified Haskore.Interface.MIDI.Write as WriteMidi
import qualified Haskore.Interface.MIDI.Save as SaveMidi
import qualified Haskore.Interface.MIDI.General as GeneralMidi

Given aPlayer.Map , Context.T , UserPatchMap.T , and file name, we can write aMusic.T value
into a midi file:

musicToFile :: FilePath ->
(UserPatchMap.T, Context.T, Music.T) -> IO ()

musicToFile fn m =
SaveMidi.toFile fn (WriteMidi.fromMusic m)

A.1 Test routines

Using the defaults above, from aMusic.T object, we can:

1. generate aPerformance.T

testPerform :: Music.T -> Performance.T
testPerform = Performance.fromMusic Player.defltMap Context.deflt
testPerform’ :: Music.T -> Performance.T’
testPerform’ = Performance.fromMusic’ Player.defltMap Context.deflt

2. generate aMidiFile.T data structure

testMidi :: Music.T -> MidiFile.T
testMidi = WriteMidi.fromPerformance UserPatchMap.deflt . testPerform

testGeneralMidi :: Music.T -> MidiFile.T
testGeneralMidi = WriteMidi.fromPerformanceGM . testPerform

testMixedMidi :: Music.T -> MidiFile.T
testMixedMidi = WriteMidi.fromPerformanceMixed UserPatchMap.deflt . testPerform

testMixedGeneralMidi :: Music.T -> MidiFile.T
testMixedGeneralMidi = WriteMidi.fromPerformanceMixedGM . testPerform

3. generate a MIDI file

test :: Music.T -> IO ()
test = SaveMidi.toFile "test.mid" . testMidi

4. generate and play a MIDI file on Windows 95, Windows NT, or Linux
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testPlay :: String -> Music.T -> IO ()
testPlay cmd m = do

test m
system cmd
return ()

testWin95, testNT, testLinux, testTimidity :: Music.T -> IO ()
testWin95 = testPlay "mplayer test.mid"
testNT = testPlay "mplay32 test.mid"
testLinux = testPlay "playmidi -rf test.mid"
testTimidity = testPlay "timidity -B8,9 test.mid"

Alternatively, just runtest m manually, and then invoke the midi player on your system usingplay ,
defined below for NT:

play :: IO ()
play = do

system "mplay32 test.mid"
return ()

A.2 Some General Midi test functions

Use these functions with caution.

A General Midi user patch map; i.e. one that maps GM instrument names to themselves, using a channel
that is the patch number modulo 16. This is for use ONLY in the code that follows, o/w channel duplication
is possible, which will screw things up in general.

gmUpm :: UserPatchMap.T
gmUpm =map (\(gmn, n) -> (gmn, ( mod n 16 + 1, n))) GeneralMidi. map

Something to play each ”instrument group” of 8 GM instruments; this function will play a C major
arpeggio on each instrument.

gmTest :: Int -> IO ()
gmTest i =

let gMM = take 8 ( drop (i*8) GeneralMidi. map)
mu = Music.line ( map (simple . fst ) gMM)
simple inm = Music.setInstrument inm Music.cMajArp

in musicToFile "test.mid" (gmUpm, Context.deflt, mu)

B Examples

B.1 Haskore in Action
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module Haskore.Example.Miscellaneous where

import IO
import Data. Ratio ((%))
import Haskore.General.Utility (fst3, snd3, thd3)

import qualified Haskore.Basic.Pitch as Pitch
import Haskore.Basic.Trill as Trill
import Haskore.Basic.Drum as Drum

import Haskore.Music as Music
import qualified Haskore.Music.PerformanceContext as Context
import qualified Haskore.Interface.MIDI.File as MidiFile
import qualified Haskore.Interface.MIDI.UserPatchMap as UserPatchMap
import qualified Haskore.Interface.MIDI.Write as WriteMidi
import qualified Haskore.Interface.MIDI.Save as SaveMidi
import qualified Haskore.Interface.MIDI. Read as ReadMidi
import qualified Haskore.Interface.MIDI.Load as LoadMidi
import Haskore.Interface.MIDI.Render (testMidi, testGeneralMidi)

import qualified Haskore.Example.SelfSim as SelfSim
import qualified Haskore.Example.ChildSong6 as ChildSong6
import qualified Haskore.Example.Ssf as Ssf

t0, t1, t2, t3, t4, t5,
t10s, t12, t12a, t13, t13a, t13b, t13c, t13d, t13e,
t14, t14b, t14c, t14d, cs6, ssf0 :: MidiFile.T

Simple examples of Haskore in action. Note that this module also imports modules ChildSong6, Self-
Sim, and Ssf.

From the tutorial, try things such as pr12, cMajArp, cMajChd, etc. and try applying inversions, retro-
grades, etc. on the same examples. Also tryChildSong.song . For example:

t0 = testMidi (setInstrument "piano" ChildSong6.song)

C Major scale for use in examples below:

cms’, cms :: Music.T
cms’ = line ( map (\n -> n en [])

[c 0, d 0, e 0, f 0, g 0, a 0, b 0, c 1])
cms = changeTempo 2 cms’

st of various articulations and dynamics:
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t1 = testGeneralMidi (setInstrument "percussion"
(staccato 0.1 cms +:+

cms +:+
legato 1.1 cms ))

temp, mu2 :: Music.T
temp = setInstrument "piano" (crescendo 4.0 (c 0 en []))

mu2 = setInstrument "vibes"
(diminuendo 0.75 cms +:+

crescendo 3.0 (loudness 0.25 cms))
t2 = testMidi mu2

t3 = testMidi (setInstrument "flute"
(accelerando 0.3 cms +:+

ritardando 0.6 cms ))

A function to recursively apply transformationsf’ (to elements in a sequence) andg’ (to accumulated
phrases):

rep :: (Music.T -> Music.T) -> (Music.T -> Music.T) -> Int -> Music.T -> Music.T
rep _ _ 0 _ = rest 0
rep f’ g’ n m = m =:= g’ (rep f’ g’ (n-1) (f’ m))

An example using ”rep” three times, recursively, to create a ”cascade” of sounds.

run, cascade, cascades :: Music.T
run = rep ( transpose 5) (delay tn) 8 (c 0 tn [])
cascade = rep ( transpose 4) (delay en) 8 run
cascades = rep id (delay sn) 2 cascade

t4’ :: Music.T -> MidiFile.T
t4’ x = testMidi (setInstrument "piano" x)
t4 = testMidi (setInstrument "piano"

(cascades +:+ Music. reverse cascades))

What happens if we simply reverse thef andg arguments?

run’, cascade’, cascades’ :: Music.T
run’ = rep (delay tn) ( transpose 5) 4 (c 0 tn [])
cascade’ = rep (delay en) ( transpose 4) 6 run’
cascades’ = rep (delay sn) id 2 cascade’
t5 = testMidi (setInstrument "piano" cascades’)

Example from the SelfSim module.

t10s = testMidi (rep (delay SelfSim.durss) ( transpose 4) 2 SelfSim.ss)
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Example from the ChildSong6 module.

cs6 = testMidi ChildSong6.song

Example from the Ssf (Stars and Stripes Forever) module.

ssf0 = testMidi Ssf.song

Midi percussion test. Plays all ”notes” in a range. (Requires adding an instrument for percussion to the
UserPatchMap .)

drums :: Pitch.Absolute -> Pitch.Absolute -> Music.T
drums dr0 dr1 = setInstrument "drums"

(line ( map (\p -> note (Pitch. fromInt p) sn []) [dr0..dr1]))

t11 :: Pitch.Absolute -> Pitch.Absolute -> MidiFile.T
t11 dr0 dr1 = testMidi (drums dr0 dr1)

Test ofMusic.take and shorten.

t12 = testMidi (Music. take 4 ChildSong6.song)
t12a = testMidi (cms /=: ChildSong6.song)

Tests of the trill functions.

t13note :: Music.T
t13note = c 1 qn []
t13 = testMidi (trill 1 sn t13note)
t13a = testMidi (trill’ 2 dqn t13note)
t13b = testMidi (trilln 1 5 t13note)
t13c = testMidi (trilln’ 3 7 t13note)
t13d = testMidi (roll tn t13note)
t13e = testMidi (changeTempo (2/3) ( transpose 2 (setInstrument "piano" (trilln’ 2 7 t13note))))

Tests of drum.

t14 = testMidi (setInstrument "Drum" (Drum.toMusic AcousticSnare qn []))

A ”funk groove”

t14b = let p1 = Drum.toMusic LowTom qn []
p2 = Drum.toMusic AcousticSnare en []

in testMidi (changeTempo 3 (setInstrument "Drum" (line ( replicate 4
(line [p1, qnr, p2, qnr, p2,

p1, p1, qnr, p2, enr]
=:= roll en (Drum.toMusic ClosedHiHat 2 []))))))
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A ”jazz groove”

t14c = let p1 = Drum.toMusic CrashCymbal2 qn []
p2 = Drum.toMusic AcousticSnare en []
p3 = Drum.toMusic LowTom qn []

in testMidi (changeTempo 3 (setInstrument "Drum" (line ( replicate 8
((p1 +:+ changeTempo (3%2) (p2 +:+ enr +:+ p2))

=:= (p3 +:+ qnr)) ))))

t14d = let p1 = Drum.toMusic LowTom en []
p2 = Drum.toMusic AcousticSnare hn []

in testMidi (setInstrument "Drum"
(line [roll tn p1,

p1,
p1,
rest en,
roll tn p1,
p1,
p1,
rest qn,
roll tn p2,
p1,
p1] ))

Tests of the MIDI interface. Music.T into a MIDI file.

tab :: Music.T -> IO ()
tab m = SaveMidi.toFile "test.mid" $

WriteMidi.fromMusic (UserPatchMap.deflt, Context.deflt, m)

Music.T to a MidiFile datatype and back to Music.

tad :: Music.T -> (UserPatchMap.T, Context.T, Music.T)
tad m = ReadMidi.toMusic (testMidi m)

A MIDI file to a MidiFile datatype and back to a MIDI file.

tcb, tc, tcd, tcdab :: FilePath -> IO ()
tcb file = LoadMidi.fromFile file >>= SaveMidi.toFile "test.mid"

MIDI file to MidiFile datatype.

tc file = LoadMidi.fromFile file >>= print

MIDI file to Music.T , aUserPatchMap , and aContext .

tcd file = do
x <- LoadMidi.fromFile file
print $ fst3 $ ReadMidi.toMusic x
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print $ snd3 $ ReadMidi.toMusic x
print $ thd3 $ ReadMidi.toMusic x

A MIDI file to Music.T and back to a MIDI file.

tcdab file =
LoadMidi.fromFile file >>=

(SaveMidi.toFile "test.mid" . WriteMidi.fromMusic . ReadMidi.toMusic)

B.2 Children’s Song No. 6

This is a partial encoding of Chick Corea’s “Children’s Song No. 6”.

module Haskore.Example.ChildSong6 where
import Haskore.Music as Music hiding (dur)

note updaters for mappings

fdb, fd :: t -> (t -> [Music.NoteAttribute] -> m) -> m
fdb dur n = n dur [Velocity (10/13)]
fd dur n = n dur v

vel :: ([Music.NoteAttribute] -> m) -> m
vel n = n v

v :: [Music.NoteAttribute]
v = []

lmap :: (a -> Music.T) -> [a] -> Music.T
lmap func l = line ( map func l)

bassLine, mainVoice, song :: Music.T

Baseline:

b1, b2, b3 :: Music.T
b1 = lmap (fdb dqn) [b 3, fs 4, g 4, fs 4]
b2 = lmap (fdb dqn) [b 3, es 4, fs 4, es 4]
b3 = lmap (fdb dqn) [as 3, fs 4, g 4, fs 4]

bassLine = line $ concat [ replicate 3 b1, replicate 2 b2,
replicate 4 b3, replicate 5 b1]

Main Voice:
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v1, v1a, v1b :: Music.T
v1 = v1a +:+ v1b
v1a = lmap (fd en) [a 5, e 5, d 5, fs 5, cs 5, b 4, e 5, b 4]
v1b = lmap vel [cs 5 tn, d 5 (qn-tn), cs 5 en, b 4 en]

v2, v2a, v2b, v2c, v2d, v2e, v2f :: Music.T
v2 = line [v2a, v2b, v2c, v2d, v2e, v2f]
v2a = lmap vel [cs 5 (dhn+dhn), d 5 dhn,

f 5 hn, gs 5 qn, fs 5 (hn+en), g 5 en]
v2b = lmap (fd en) [fs 5, e 5, cs 5, as 4] +:+ a 4 dqn v +:+

lmap (fd en) [as 4, cs 5, fs 5, e 5, fs 5, g 5, as 5]
v2c = lmap vel [cs 6 (hn+en), d 6 en, cs 6 en, e 5 en] +:+ enr +:+

lmap vel [as 5 en, a 5 en, g 5 en, d 5 qn, c 5 en, cs 5 en]
v2d = lmap (fd en) [fs 5, cs 5, e 5, cs 5, a 4, as 4, d 5, e 5, fs 5] +:+

lmap vel [fs 5 tn, e 5 (qn-tn), d 5 en, e 5 tn, d 5 (qn-tn),
cs 5 en, d 5 tn, cs 5 (qn-tn), b 4 (en+hn)]

v2e = lmap vel [cs 5 en, b 4 en, fs 5 en, a 5 en, b 5 (hn+qn), a 5 en,
fs 5 en, e 5 qn, d 5 en, fs 5 en, e 5 hn, d 5 hn, fs 5 qn]

v2f = changeTempo (3/2) (lmap vel [cs 5 en, d 5 en, cs 5 en]) +:+ b 4 (3*dhn+hn) v

mainVoice = line ( replicate 3 v1 ++ [v2])

Putting it all together:

song = setInstrument "piano" ( transpose (-48) (changeTempo 3
(bassLine =:= mainVoice)))

B.3 Self-Similar (Fractal) Music.T

module Haskore.Example.SelfSim where

import qualified Haskore.Basic.Pitch as Pitch
import Haskore.Music as Music hiding (a, d)
import Haskore.Interface.MIDI.Render (testMidi)
import qualified Haskore.Interface.MIDI.File as MidiFile

example of self-similar, or fractal, music.

data Cluster = Cl SNote [Cluster] -- this is called a Rose tree
type Pat = [SNote]
type SNote = [(Pitch.Absolute,Dur)] -- i . e. a chord

sim :: Pat -> [Cluster]
sim pat = map mkCluster pat

where mkCluster notes = Cl notes ( map (mkCluster . addmult notes) pat)
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addmult :: ( Num a, Num b) => [(a, b)] -> [(a, b)] -> [(a, b)]
addmult pds iss = zipWith addmult’ pds iss

where addmult’ (p,d) (i,s) = (p+i,d*s)

simFringe :: ( Num a) => a -> Pat -> [SNote]
simFringe n pat = fringe n (Cl [(0,0)] (sim pat))

fringe :: ( Num a) => a -> Cluster -> [SNote]
fringe 0 (Cl n _) = [n]
fringe m (Cl _ cls) = concatMap (fringe (m-1)) cls

-- this just converts the result to Haskore :
simToHask :: [[(Pitch.Absolute, Music.Dur)]] -> Music.T
simToHask s = let mkNote (p,d) = note (Pitch. fromInt p) d []

in line ( map (chord . map mkNote) s)

-- and here are some examples of it being applied :

sim1, sim2, sim12, sim3, sim4, sim4s :: Int -> Music.T
t6, t7, t8, t9, t10 :: MidiFile.T

sim1 n = setInstrument "bass"
( transpose (-12)

(changeTempo 4 (simToHask (simFringe n pat1))))
t6 = testMidi (sim1 4)

sim2 n = setInstrument "piano"
( transpose 5

(changeTempo 4 (simToHask (simFringe n pat2))))
t7 = testMidi (sim2 4)

sim12 n = sim1 n =:= sim2 n
t8 = testMidi (sim12 4)

sim3 n = setInstrument "vibes"
( transpose 0

(changeTempo 4 (simToHask (simFringe n pat3))))
t9 = testMidi (sim3 3)

sim4 n = ( transpose 12
(changeTempo 2 (simToHask (simFringe n pat4’))))

sim4s n = let s = sim4 n
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l1 = setInstrument "flute" s
l2 = setInstrument "bass" ( transpose (-36) (Music. reverse s))

in l1 =:= l2

ss :: Music.T
ss = sim4s 3
durss :: Music.Dur
durss = dur ss

t10 = testMidi ss

pat1, pat2, pat3, pat4, pat4’ :: [SNote]
pat1 = [[(0,1.0)],[(4,0.5)],[(7,1.0)],[(5,0.5)]]
pat2 = [[(0,0.5)],[(4,1.0)],[(7,0.5)],[(5,1.0)]]
pat3 = [[(2,0.6)],[(5,1.3)],[(0,1.0)],[(7,0.9)]]
pat4’ = [[(3,0.5)],[(4,0.25)],[(0,0.25)],[(6,1.0)]]
pat4 = [[(3,0.5),(8,0.5),(22,0.5)],[(4,0.25),(7,0.25),(21,0.25)],

[(0,0.25),(5,0.25),(15,0.25)],[(6,1.0),(9,1.0),(19,1.0)]]

C Design discussion

This section presents the advantages and disadvantages of several design decisions that has been made.

Principal type T Analogously to Modula-3 we use the following naming scheme: A module has the name
of the principal type and the type itself has the nameT. If there is only one constructor for that type its name
is C. Btw. is there a better name?Ccould also be used for a type class if this is the main object described in
a module. A function in a module don’t need a prefix related to the principal type.

A programmer using such a module is encouraged to import it with qualified identifiers. This way the
programmer may abbreviate the module name to its convenience.

Music.T The data structure should be hidden. The user should usechangeTempo and similar functions
instead of the constructorsTempo etc. This way the definition of aMusic.T stays independent from the
actual data structureMusic.T . ThenchangeTempo can be implemented silently using a constructor or
using a mapping function.

Media.T The idea of extracting the structure of animation movies and music into an abstract data struc-
ture is taken from Paul Hudak’s paper “An Algebraic Theory of Polymorphic Temporal Media”.

The temporial media data structureMedia.T is used here as the basis type for Haskore’s Music.

Binary composition vs. List composition There are two natural representations for temporal media.
We have implemented both of them:

139



1. Media.Binary uses binary constructors:+: , :=:

2. Media.List uses List constructorsSerial , Parallel

Both of these modules provide the functionsfoldBinFlat andfoldListFlat which apply binary
functions or list functions, respectively, toMedia.T . Import your prefered module toMedia .

Each of these data structures has its advantages:

Media.Binary.T

• There is only one way to represent a zero object, which must be a single media primitive (Prim ).

• You need only a few constructors for serial and parallel compositions.

Media.List.T

• Zero objects can be represented without a particalur zero primitives.

• You can represent two different zero objects, an empty parallelism and an empty serialism. Both can
be interpreted as limits of compositions of decreasing size.

• You can store music with an internal structure which is lost in a performance. E.g. a serial composition
of serial compositions will sound identically to a flattened serial composition, but the separation might
contain additional information.

In my (Henning’s) opinionMusic.T is for representing musical ideas andPerformance.T is for
representing the sound of a song. Thus it is ok and even useful if there are several ways to represent the
same sound impression (Performance.T ) in different ways (Music.T ), just like it is possible to write
very different LATEX code which results in the same page graphics. The same style of text may have different
meanings which can be seen only in the LATEX source code. Analogously music can be structured more
detailed than one can hear.

Algebraic structure The typeMedia.T almost forms an algebraic ring where=:= is like a sum
(commutative) and+:+ is like a product (non-commutative). UnfortunatelyMedia.T is not really a ring:
There are no inverse elements with respect to addition (=:= ). Further (=:= ) is not distributive with respect
to (+:+ ) becausex is different fromx =:= x . There is also a problem if the durations of the parallel music
objects differ. I.e. ifdur y /= dur z thenx +:+ (y =:= z) is different from(x +:+ y) =:=
(x +:+ z) even ifx == x =:= x holds. So it is probably better not to makeMedia.T an instance of
aRing type class. (In Prelude 98 the classNumis quite aRing type class.)

Relative times inPerformance.T Absolute times for events disallow infinite streams of music. The
time information becomes more and more inaccurate and finally there is an overflow or no change in time.
Relative times make synchronization difficult, especially many small time differences are critical. But since
the Music.T is inherently based on time differences one cannot get rid of sum rounding errors. The
problem can only be weakened by more precise floating point formats.
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Unification of Rests and Notes Since rests and notes share the property of the duration the constructor
Music.Atom is used which handles the duration and the particalur music primitive, namely Rest and Note.
All functions concerning duration (dur , cut ) don’t need to interpret the musical primitive.

Pitch With the definitionPitch = (Octave, PitchClass) (swapped order with respect to orig-
inal Haskore) the order onPitch equals the order on pitches. The problem is that the range of notes of
the enumerationPitchClass overlaps with notes from neighboured octaves. Functions likeo0 , o1 , o2
etc. may support this order for short style functional note definitions. It should be e.g.o0 g == g 0 .
Alternatively one can put this into a duration function likeqn’ , en’ , etc. Then it must hold e.g.qn’ 0 g
== g 0 qn

Overlapping PitchClass es, e.g. (0,Bs) < (1,Cf) although absPitch (0,Bs) >
absPitch (1,Cf)

The musical naming of notes is a bit unlogical. The range is not from A to G but from C to B. Further
on there are two octaves with note names without indices (e.g.A anda). Both octaves are candidates for a
“zero” octave. We define that octave0 is the one which containsa.

Absolute pitch Find a definition for the absolute pitch that will be commonly used for MIDI, CSound,
and Signal output.

Yamaha-SY35 manual says:

• Note $00 - (-2,C)

• Note $7F - ( 8,G)

But which A is 440 Hz?

By playing around with the Multi key range I found out that the keyboard ranges from (1,C) to (6,C) (in
MIDI terms). The frequencies of the instruments played at the same note are not equal. :-( Many of them
have (3,A) (MIDI) = 440 Hz, but some are an octave below, some are an octave above. In CSound it is (8,A)
= 440 Hz. Very confusing.

Volume vs. Velocity MIDI distinguishes Volume and Velocity. Volume is related to the physical ampli-
tude, i.e. if we want to change the Volume of a sound we simply amplify the sound by a constant factor.
In contrast to that Velocity means the speed with which a key is pressed or released. This is most oftenly
interpreted as the force with which an instrument is played. This distinction is very sensible and should
be reflected inMusic.T . Velocity is inherently related to the beginning and the end of a note, whereas
the Volume can be changed everywhere. All phrases related to dynamics are mapped to velocities and not
to volumes, since one cannot change the volume of natural instruments without changing the force to play
them (and thus changing their timbre). The control of Volume is to be added later, together with controllers
like pitch bender, frequency modulation and so on.
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Global instrument setting vs. note attribute Changing an instrument by surrounding a piece of music
with an Instr constructor is not very natural. On which parts of the piece it has an effect or if it has an
effect at all depends onInstr statements within the piece of music. To assert that instruments are set only
once and that setting an instrument has an effect, we should distinguish between (instrument-less) melodies
and music (with instrument information). In a melody we store only notes and rests, in a music we store
an instrument for any note. Even more since the instrument is stored for each note this can be interpreted
as an instrument event, where some instruments support note pitches and others not (sound effects) or other
attributes (velocity).

PhraseFun Each of the currently implemented instances ofPhraseFun could be implemented as well
with essentially the type(T, Dur) -> (T, Dur) instead ofMusic.T -> (T, Dur) . This would
be a more clean design but lacks some efficiency because e.g. the Loudness can be controlled by changing
the default velocity of the performance context. This is much more efficient (even more if Loudness phrases
are cascaded) than modifying a performance afterwards.

Phrase Instead of a list ofPhraseAttribute s the constructorPhrase allows only one attribute in
order to make the order application transparent to the user.
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